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ABSTRACT

This paper addresses the issue of automatic identifica-
tion of backlash in robot transmissions. Traditionally,
the backlash is measured manually either by the trans-
mission manufacturer or the robot manufacturer. Be-
fore the robot can be delivered to the end-customer,
the backlash must be within specified tolerances. For
robots with motor measurements only, backlash is an
example of an uncontrollable behaviour which directly
affects the absolute accuracy of the robot’s tool-centre-
point. Even if we do not attempt to bring backlash
under real-time control in this paper, we will describe
a method to automatically identify/estimate the back-
lash in the robot transmissions from torque and posi-
tion measurements. Hence, only the transmissions that
do not meet the backlash requirements in the automatic
tests need to be checked and adjusted manually.

Keywords: Backlash, Transmission, Two-Mass Model,
Friction, Nonlinear Observers, Extended Kalman Filter,
Augmented state.

1 INTRODUCTION

Backlash is the shortest distance between non-driving
teeth in mating gears, see Fig. 1. Backlash is difficult to
estimate because it can not be described by a linear re-
lationship. When the teeth are not in contact, the trans-
mission force is zero. When the teeth are in contact,
the force is usually proportional to the angular position
difference between the gears due to elasticity.

Figure 1:Backlash in mating gear transmissions.

The approach we propose for estimating the backlash is
based on the State-Augmented Extended Kalman Filter.
The original Kalman filter for linear systems emerged
in the 60’s and has become a mature technology for so-

called ”white-box” state estimation. By white-box, we
mean that all parameters are known and only the state
variables need to be estimated. If, however, the result-
ing model contains unknown parameters, it is called a
gray-box model [4, 5]. The name ”Extended Kalman
Filter” (EKF) is used when the Kalman filter is applied
to estimation of states of nonlinear dynamical systems.
In this case, linearisations of the true system equations,
at current estimates, are used when computing the fil-
ter gain matrices, and the filter is only an approxima-
tion of the optimal nonlinear observer (filter). The name
”State Augmented Extended Kalman Filter” (SAEKF)
comes from the augmentation of the (linear or nonlin-
ear) system stateṡx = f(x,u) with the ”dynamics”ṗ
of the unknown parametersp. For instance, for con-
stant parameters with some possible unknown external
influence, the dynamics ofp is often set to a ”random
walk” ṗ = w, wherew is a stochastic noise process.
What makes the augmented filter work, is the connec-
tion of the parameter estimatesp and the system states
x through the covariances of the noise processes.

In this paper, we report on the application of these
concepts to the identification of a two-mass mechani-
cal systems with backlash, friction and joint elasticity.
The experimental work was carried out on two different
robot axes.

Gray-box identification also has some advantages over
black-box identification methods, such as ARMAX
models or Neural Networks. Black-box models usually
do not utilise prior knowledge of the system and often
a large set of parameters need to be estimated. In gray-
box identification, only the unknown parameters are es-
timated. Furthermore, if only one physical parameter
changes due to a modification of the system, only that
specific parameter has to be re-estimated, whereas in
a black-box model, the whole set of parameters would
have to be re-determined.

2 BACKLASH MODEL

The differential equations of motion for a two-mass
motor-arm system are given as follows.

ẋ1 = x3

ẋ2 = x4

ẋ3 =
1

m1
(u−D(x3 − x4)− τK − τf −Kr)

ẋ4 =
1

m2
(D(x3 − x4) + τK) (1)
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τf = Cvx3 + Cc
π

2
atan(αx3)

wherem1, m2 are the motor and arm inertias, respec-
tively. τK is a nonlinear backlash and spring function to
be identified.Kr is a P-controller on the motor position,
u is an additional torque input used for identification,D
is a known damper coefficient andτf is a motor friction
torque. The model is written on short form as follows

ẋ = f(x,u,p)

wherep = [τK ]T is the unknown backlash and spring
(time varying) function to be estimated.τf is the vis-
cous and Coloumb friction torque model. To get the
EKF to work properly, a differentiable approximation
of the Coloumb friction is needed (as opposed to the
τf = Ccsign(·) function) in order to compute the gra-
dients df

dx at speeds close to zero. The modelled friction
torque is illustrated in Fig. 2.

Figure 2: Differentiable model approximation of fric-
tion torque withCc = 0.27, α = 100 andCv = 0.01.

The measurements are either motor velocity only or
both motor and arm velocity. In other words, the two
candidates for the measurement vectory are

y = x3 + w

or

y = [x3 + w1, x4 + w2]T ,

wherew is measurement noise. The model is illustrated
in Figure 3.

Figure 3: Mechanical system with nonlinear backlash
and motor friction.
One advantage of the SAEKF approach, is the fact that
we do not have to assume a particular model structure
for the backlash and spring function to be identified.
Instead, we makeτK an augmented state. This feature
will become clearer in the following section.

3 AUGMENTED STATES

Traditionally, in gray box identification, functions de-
pending on some tuning parameters have been used to
approximate nonlinear relationships. These constant
parameters are then tuned using the measurements. As
an example, a 3rd order polynomialy = α0 + α1x +
α2x

2+α3x
3 is shown in Figure 4 for the approximation

of a linear spring with backlash. This ”parametric ap-

Figure 4: Polynomial approximation to backlash and
spring function.

proach” for approximating backlash has several draw-
backs:

• The polynomial obtained is a differentiable func-
tion and it becomes difficult to estimate the size of
the backlash from the coefficientsα0, α1, α2, α3.

• The polynomial approach introduces several pa-
rameters, in this case four, which increases the
complexity of the problem.

What makes the SAEKF approach really useful is the
fact that the parameters to be estimated do not have to
be constants, but can be time varying or depend in a
nonlinear fashion on the current state. The main new
idea of this paper is to replace the polynomial coeffi-
cients with only one augmented state for the spring and
backlash forceτK . The augmented state filter will then
estimate the forceτK as a function of time and no par-
ticular shape of the underlying nonlinearity has to be
assumed.

Augmented states are introduced into the system equa-
tions in the following way.[

ẋ
ṗ

]
=

[
f(x,u,p)

0

]
+ v (2)

wherev is certain process noise with zero mean. In our
concrete two-mass problem the complete augmented
model boils down to:

ẋ1 = x3 + v1

ẋ2 = x4 + v2

ẋ3 =
1

m1
(u−D(x3 − x4)− p− τf −Kr) + v3

ẋ4 =
1

m2
(D(x3 − x4) + p) + v4

ṗ = v5
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where vi variables are noise processes acting on the
state and parameter variables. The covariance matrix
for the augmented noise processv is given as

E(v(t)vT (t
′
)) =

[
Qxx 0
0 Qpp

]
δ(t− t

′
) (3)

whereδ is the unit impulse (Dirac) function,Qxx is
the covariance of the noise on the state derivatives.
Since the position states are simply derivatives of the
velocity states, the covariances of the noise processes
v1 andv2 can be set to zero, ie.Qxx(1, 1) = 0 and
Qxx(2, 2) = 0. Qpp is the covariance of the noise on
the augmented state derivative, i.e. the ”time derivative”
of the backlash and spring force.Qpp can be seen as the
main tuning parameter of the augmented filter. IfQpp

is set to zero, the parameterp will remain a constant and
equal to its initial value. The larger the value ofQpp,
the faster the augmented state will be updated as new
measurements come in, but also the larger will be the
variance of the estimates.

Note that for nonlinear systems, even if the disturbances
were Gaussian and white, and the covariancesQxx and
R were known (a rather unrealistic assumption), their
true values would not necessarily give the best filter
performance. This occurs because the propagation and
update equations of the filter are approximations. An
increased value of the covariance matrices can reduce
the effects of these approximations, [6].

4 AUGMENTED FILTER EQUATIONS

The augmented filter equations were presented in [1]
and we summarise them here in Table 1 for complete-
ness. Note that the equations for the state and covari-
ance propagation in Table 1 are a mixture of contin-
uous and discrete equations. First, using the nonlin-
ear system model and modified Riccati equations, the
state vector and the covariances are propagated contin-
uously intk ≤ t ≤ t−k+1. Secondly, the state and pa-
rameter vectors and the covariances are updated using
Kalman filter gains computed via the predictions made
in the previous step. Note how the quadratic terms of
the Riccati equations are introduced in the covariance
update step and not in the predictor step. This is done
mainly for numerical stability. The nonlinear system
is only linearised (at the current estimates at timetk)
when computing the covariance updates and the filter
gain coefficients. For the state estimate propagation, the
complete nonlinear model is used.

5 SIMULATIONS 1

In this section we present some simulation results for
the Augmented filter. Although the position and veloc-
ity states are simulated, the input torque in Fig. 5 and
the mass values are representative for an ABB industrial
type robot.

Figure 5:Motor torque input used for identification of
backlash and spring function.

The model parameters were set as follows.

m1 = 0.006442
m2 = 0.023454
D = 0.01

Kr = 1
Cv = 0.2
Cc = 0

The covariance matrices were set as follows.

Qpp = 1 R = 2.5 · 10−4

Qxx =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


R is the covariance of the measurement (motor and/or
arm velocity) noisew and was a calculated value. The
other parameters,Qpp andQxx were tuned manually.
Note that a noise on the input signalu can be expressed
as part ofQxx. A noise signalvu on u is equivalent to
a noise signalv3 = vu

m1
on the acceleratioṅx3. Hence,

noise on the input torque can be modelled by element
Qxx(3, 3).

Figure 6:Model state predictions with measurements of
motor velocity only.

Fig. 6 shows the position and velocity states in the or-
der (x1, x2, x3, x4). The statex3 was the only measure-
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State estimate propagation ˙̂x = f(x̂,u, p̂(tk))
tk ≤ t ≤ t−k+1

Covariance propagation Ṗxx = df
dxT Pxx + Pxx

dfT

dx + df
dpT PT

xp + Pxp
dfT

dp + Qxx

tk ≤ t ≤ t−k+1 Ṗxp = df
dxT Pxp + df

dpT Ppp

Ṗpp = Qpp

Predicted output ŷ(tk+1) = h(x̂(t−k+1),u(tk+1), p̂(tk))

Prediction error e(tk+1) = y(tk+1)− ŷ(tk+1)

Approximate prediction A(tk+1) = R + dh
dxT Pxx(t−k+1)

dhT

dx + dh
dxT Pxp(t−k+1)

dhT

dp

error covariance matrix + dh
dpT PT

xp(t
−
k+1)

dhT

dx + dh
dpT Ppp(t−k+1)

dhT

dp

Filter gain matrices K(tk+1) =
(
Pxx(t−k+1)

dhT

dx + Pxp(t−k+1)
dhT

dp

)
A−1(tk+1)

L(tk+1) =
(
PT

xp(t
−
k+1)

dhT

dx + Ppp(t−k+1)
dhT

dp

)
A−1(tk+1)

State update x̂(tk+1) = x̂(t−k+1) + K(tk+1)e(tk+1)

Parameter update p̂(tk+1) = p̂(t−k+1) + L(tk+1)e(tk+1)

Covariance update Pxx(tk+1) = Pxx(t−k+1)−K(tk+1)A(tk+1)KT (tk+1)
Pxp(t+k+1) = Pxp(t−k+1)−K(tk+1)A(tk+1)LT (tk+1)
Ppp(t+k+1) = Ppp(t−k+1)− L(tk+1)A(tk+1)LT (tk+1)

Table 1:State-augmented Extended Kalman Filter (SAEKF) .

ment, ie

y = h(x,u,p) = x3 + w (4)

The other statesx1, x2 andx4 were simulated/estimated
by the Kalman filter.

Figure 7: Estimate of backlash functionτK with mea-
surements of motor velocity only. The true backlash is
0.2 rad.

Fig. 7 shows the simulated augmented stateτK as a
function of the position differencex1 − x2. The true
backlash and spring function forτK had a backlash of
0.2 rad and a spring coefficient of37Nm

rad . Note how
well the augmented state describes the nonlinearity. We
stress the fact that no apriori assumptions on the shape
of the nonlinearity were made.

Fig. 8 shows the augmented state as a function of time.
We clearly see the benefits of the SAEKF approach: the
augmented state is able to track rapid changes and can
be used to model time-varying parameters.

Figure 8:Augmented state as a function of time .

The real motor velocity resulting from the input torque
in Fig. 5 is shown in Fig. 9. Clearly, this measurement
on the real robot does not match the modelled motor ve-
locity x3 in Fig. 6. In this case, the SAEKF is also not
able to produce sensible estimates of the backlash and
spring force. It follows that the masses, dampers and
friction parameters must be accurately identified prior
to making the nonlinear identification experiments. Al-
ternatively, they can/must be estimated together with
the backlash using the same SAEKF ideas. Possible
approaches for separately estimating rigid-body param-
eters and friction are described in [2, 3].

6 SIMULATIONS 2

A similar simulation was made on a different ABB
robot model, but this time accurate rigid-body param-
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Figure 9:Real measured motor velocity resulting from
torque input in Fig. 5.

eters were available. Further, we used a more aggres-
sive excitation signal (compare the excitations in Figs.
5 and 10) and measurements of both motor and arm ve-
locities. As for Section 5, we first simulated the mea-
surements using a realistic motor torque input. A PRBS
motor torque signal is shown (for0 ≤ t ≤ 0.045) in
Fig. 10. The model parameters were set as follows

m1 = 0.000800
m2 = 0.001765
D = 0.01,Kr = 0
Cc = 0.27, Cv = 0.01, α = 100

and for the covariance matrices

Qpp = 100, R = 1.0

Qxx =


0 0 0 0
0 0 0 0
0 0 1000 0
0 0 0 0


Note that the controllerKr is set to zero in these tests,

Figure 10: Piecewise random binary signal (PRBS)
used as motor torque input.

while in the previous sectionKr was equal to one. For
the control system used in the first test, the controller
could not be switched off for safety reasons, while the
tests in this section were made with a prototype con-
troller without these safety requirements.

Both for the simulations in this section and with the real
measurements in the following section, we experienced

Figure 11:Model state prediction errors with simulated
measurements of both motor and arm velocities.

Figure 12:Estimate of backlash functionτK with sim-
ulated measurements of both motor and arm velocities.
The true backlash is0.1 rad and the true spring con-
stant is79Nm

rad .

a significant improvement in the filter performance by
increasing the covariance matrices, as suggested by [6].

Fig. 11 shows model state prediction errors found by
comparing the simulated states with those of the Aug-
mented filter. The filter does a good job and produces
zero mean residuals. Fig. 12 shows the identified non-
linear backlash and spring function vs. the motor and
arm position difference. In this case, the true backlash
size was set to0.1 rad. The solid line in the figure is the
mean value of the augmented state (τK) and is a very
good description of the true backlash and spring func-
tion.

7 SIMULATIONS 3

In this section we repeat the test in the previous section,
but with real measurements of motor and arm velocity.
This time we double-checked that the simulated mea-
surements were a reasonable match to the real measure-
ments and we confirmed that the two-mass model with
the rigid-body and friction parameters from the previ-
ous section is a good description of the real robot axis.
Since the transmission model is unknown, we can only
make an assumption on the transmission force in the
simulations and a rough comparison between the simu-
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lated model and the real measurements.

Figure 13: Measurement prediction errors with real
measurements of both motor and arm velocities.

Figure 14:Estimate of backlash functionτK with real
measurements of both motor and arm velocities.

Fig. 13 shows the differences between the measure-
ments and the corresponding filter predictions. The fil-
ter produces residuals with zero mean as desired. Fig.
14 shows the estimate ofτK . We see that there is no ev-
idence of backlash for this particular robot axis. We be-
lieve that the spread of the augmented values is caused
by the fact that the two-mass model with the chosen
mass and friction parameters is not an exact description
of the real system.

The mean values of the transmission force behave like
a linear spring with coefficientK ≈ 67Nm

rad . Again,
we see the benefit of not making an assumption on the
shape of the nonlinearity. If the transmission model
happens to be linear, the filter will still give us the
correct answer! In fact, the experiments in Fig. 14
were made on a new ABB robot model with completely
backlash-free transmissions.

8 CONCLUSIONS

This paper has presented an approach for estimating a
nonlinear transmission force by using the Augmented
State Extended Kalman Filter approach. The main new
idea of the paper is to replace the common approach of
approximations via polynomials by the estimation of a
single augmented state. This significantly reduces the

complexity of the problem and makes possible to track
reasonably fast model dynamics. Another advantage of
the single augmented state approach, is that no assump-
tions on the nonlinear shape has to be made. At least
in principle, the augmentedτK is able to track any kind
of nonlinearity, including complex hysteresis functions
with memory.

However, there are several considerations which have
to be made before a good estimate is obtained. First,
all model parameters other than the transmission model
must be well known or estimated, before hand or simul-
taneously. Without a good model description, the filter
is not able to produce reasonable estimates of the trans-
mission force. In other words, robustness of the filter
with respect to model and parameter errors is a crucial
issue. Second, the covariance matricesQxx, Qpp and
R must be carefully tuned. As suggested by [6], in-
creased values of the covariances can increase the filter
performance.

In this particular application, a good test to detect mod-
elling errors is to simulate the measurements by using
the real input signal and compare with the real mea-
surements. Further, the input signal must be aggres-
sive enough to create persistent excitation of the trans-
mission force. Ideally, one should avoid going through
the backlash region at the same time as going through
the zero motor velocity region where the static friction
force has a large influence. In other words, the motor-
arm differencex1 − x2 should be outside the backlash
region when the motor velocityx3 changes direction.
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ification of Physical Parameters in a Rigid Manip-
ulator Wrist Model”,the 3rd Imacs Symposium on
Mathematical Modelling, pp. 849-855, ISBN: 3-
901608-15-X, Vienna, Austria, Feb. 2-4 2000.

[3] Hovland, G.E., S. Hanssen, O.J. Sørdalen, T.
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