
Fished App
IS-304: 2022

Title:

Subject code: IS-304

Subject name: Bachelor thesis in information systems

Course coordinator: Hallgeir Nilsen

Supervisor/Mentor: Janis Gailis

Client: Oxidane Venture AS

Students:

Surname First name

Andersen Ole Marius

Brødsjø Markus

Granås Ole Bjørnar

Gustavsen Niklas A

Valen Michael Herland

I/we confirm that we do not cite or otherwise use other people's
work without this being stated and that all references are given in
the bibliography.

YES
X

NO

Can the answer be used for teaching purposes? YES
X

NO

We confirm that everyone in the group has contributed to the
answer.

YES
X

NO

1

Abstract
This report summarizes a project done in collaboration with Oxidane Venture as the last part

of a bachelor’s degree in IT and Information Systems. The project spanned through the

Spring semester of 2022, starting in early January and ending in late May. The project was

offered by Oxidane Venture in regards to developing a mobile application for one of their

investment companies, Fished. The main focus of the report is on the process, central

decisions, and reflections.

As mobile application development was new to the majority of the group, it offered a steep

learning curve. The curve flattened out as the project progressed and the group acquired more

knowledge surrounding mobile application development. During the project, every member

of the group has participated in all aspects to some degree. This resulted in an even learning

outcome, although some specializations occurred during the project mainly regarding

development and report writing. The state of the mobile application reached a satisfactory

level of functionality, however there was still a long way to go before a release could be

considered.

2/67

Preface
This report is written for people with knowledge of technical concepts in system development

and the agile framework Scrum.

We would like to take this opportunity to express our gratitude to all the people who have

been involved in our bachelor's project. It has been a tremendous educational experience

where knowledge and tips from those involved have been of great help.

Thanks to Janis Gailis for guidance on the project. You have given us sound advice related to

project management, technical advice, and more. You have also been available when we

required guidance and constructive critique. We would also thank Hallgeir Nilsen who gave

great advice on how to ensure good quality and process during his lectures and notes.

Thanks to Tor Oskar Wilhelmsen and Thomas Prestvik from Oxidane Venture for their

expertise in this project. They helped us a lot with the technical aspect of development and

gave us good insight into creating a better product and processes.

Finally, we would like to thank our family for helping us during a challenging and exciting

project. We owe part of our success to them because of their continuous support and

encouragement.

Ole Marius Andersen Niklas A Gustavsen

Markus Brødsjø
Michael Herland Valen

Ole Bjørnar Granås

3/67

Table of contents
1 Introduction 7

1.1 About Oxidane Venture 7
1.2 About the Project 8

2 Product 8
2.1 Product Requirements 8
2.2 Product demonstration 9

3 Project Management 9
3.1 Project Methodology 9

3.1.1 Roles 11
3.1.2 Backlogs 11
3.1.3 Sprints 12
3.1.4 Daily Scrum 12

3.2 Time Management 13
3.2.1 Time Estimation 13
3.2.2 Time Tracking 13

3.3 Communication 14
3.3.1 Discord 14
3.3.2 Microsoft Teams 14
3.3.3 Physical meetings 15

3.4 Administration 15
3.4.1 Azure DevOps 15
3.4.2 Google Drive & ClickUp 16

3.5 Risk Management 16
3.5.1 Risk Matrix 17

4 Analysis 19
4.1 Requirements 19
4.2 Design Criteria 20

4.2.1 Security 21
4.2.2 Reliability 22
4.2.3 Testability 22
4.2.4 Interoperability 22

4.3 Use Cases 23
5 Technology 24

5.1 Auth0 24
5.2 Platform Alternatives 25
5.3 Flutter & Dart 26

6 Architecture 27
6.1 Design Pattern 27
6.2 Deployment Diagram 28

7 Design 28
7.1 Design Principles 29

4/67

8 Quality 30
8.1 Definition of Quality 30
8.2 Quality Requirements 30
8.3 Assessment of Quality 31
8.4 Quality Assurance 31

8.4.1 Code Standard 31
8.4.2 Testing 32
8.4.3 Version Control 33
8.4.4 DevOps 33
8.4.5 Workshop 34

9 Sprints 35
9.1 Pre-Sprint (10.01-30.01) 35
9.2 Sprint 1 (31.01 - 20.2) 37
9.3 Sprint 2 (21.02 - 13.03) 38
9.4 Sprint 3 (14.03 - 03.04) 39
9.5 Sprint 4 (04.04 - 10.04) 39
9.6 Sprint 5 (11.04 - 24.04) 40
9.7 Sprint 6 (25.04 - 08.05) 41
9.8 Sprint 7 (09.5 - 15.05) 42

10 Reflection 42
10.1 Challenges 43
10.2 Previous Knowledge 44
10.3 Learning Outcome 44
10.4 Changes 45
10.4.1 TDD & Testing 45
10.4.2 Version Control Management 46

11 Group Evaluation 48
11.1 Individual Evaluation 48

References 51
Appendix 56

Appendix 1: Statement from Oxidane Venture 56
Appendix 2: Map of the Requirements 59
Appendix 3: Use Cases 60
Appendix 4: Definition of Done 62
Appendix 5: Best practice Flutter & Dart 64
Appendix 6: Git Cheatsheet 67

5/67

Figure list
Figure 1 - Project Characteristics
Figure 2 - Clockify example
Figure 3 - Risk matrix
Figure 4 - Design Criteria Table
Figure 5 - Use Case Marketplace
Figure 6 - Sequence Diagram Auth0
Figure 7 - Google Trends
Figure 8 - Deployment Diagram
Figure 9 - DevOps Flow
Figure 10 - TDD Benefit table

10
13
17
21
23
24
26
28
34
46

6/67

Part 1 - Project Overview

1 Introduction
This bachelor's project aimed to develop further and explore the knowledge and skills the

group has acquired throughout the study. The project gave an authentic setting with

opportunities to plan, analyze, and develop a product. This undertaking was the last challenge

the group had to pass before achieving a degree in IT and Information Systems.

The undertaking consisted of developing a mobile application for an existing web solution. It

included developing an understanding of requirements, pre-existing APIs, and design

elements given by a product owner. The focus of the project was not the product but the

process.

This report contains documentation of the undertaking structured into three parts; project

overview, analysis, and process. The reader will be introduced to the client, product, and

project management decisions in the project overview. A further analysis of the project

requirements and choice of technologies based on them follows in part after. The last part of

the report lays forth the group’s process through sprints, followed by a reflection on the

project.

1.1 About Oxidane Venture
Oxidane Venture is a venture company that invests in the intersection between water and

technology. One of many things they can offer the entrepreneurs they invest in is knowledge

of how to build the technology and software necessary for the ideas to become successful

(Oxidane, n.d.). Digital readiness is, in other words, one of the main points of focus for

Oxidane Venture. This is evident from the projects they involve themselves in. Examples are

Intoto, Eco Trawl, and many others, including the project the group is currently developing a

mobile application for, Fished. Intoto is about gathering and analyzing data about water

levels, particularly in rivers, to prepare for climate change regarding draughts and floods

(Intoto, n.d.). Eco trawl seeks to create more environmentally friendly technology for

industrial fishing by using underwater drones (Eco Trawl, n.d.). Fished is about creating a

digital marketplace for fish between sellers and buyers (Fished, n.d.).

7/67

1.2 About the Project
Fished is the daughter company of Reinhartsen and Oxidane Venture (Proff, n.d.). The

company seeks to digitize and simplify the process of buying, selling, and auctioning fish. It

connects users in a larger marketplace, giving them a better overview of conditions and

prices. The feature-packed marketplace empowers the users by giving them enhanced

opportunities to view, trade, and transport seafood (Fished, n.d.).

The group’s task was to create a mobile application to support the current web solution.

Finishing the application was not essential for the product owner, but rather that it tests the

waters for Fished. This gave the group an excellent opportunity to explore and experiment in

a low-risk environment with new technologies. These technologies included Auth0,

Flutter/Dart, asynchronous programming, state management, Postman, and Azure DevOps.

For a statement from the product owner see appendix 1.

2 Product
The following chapter describes the project requirements in light detail. After that, a product

description will follow with a link to a product demonstration.

2.1 Product Requirements
Oxidane Venture had a few requirements for the development of the Fished mobile

application. These requirements can be split into three categories; design, function, and

technology. Design requirements were expressed in simple terms; use the assigned mockups

and the pre-existing web application as examples in the design process. Function or

functional requirements were expressed through the input and output of the web application

and Fished’s API documentation. Finally, technology had two rigid requirements; the

application had to be a mobile application, Android, iOS, or both. Furthermore, it had to

utilize the Auth0 platform for authentication. In communication with the API, retrieving and

sending information would be impossible without Auth0 authentication. These requirements

will be discussed further in part 2, the analysis part of this report.

In addition to the requirements above, Oxidane expressed some more flexible preferences.

These were to use Azure DevOps as a version control platform and documentation hub and

Microsoft Teams for communication. Additionally, Oxidane expressed interest in utilizing

8/67

cross-compilation technology in this project. This was due to their plans to have the mobile

application on both platforms. For a map of the requirements see appendix 2.

2.2 Product demonstration
Before going into the next chapter about project management, let us present the current

product. The product was programmed using the framework Flutter, and the programming

language Dart. It consists of eight pages displaying the product’s core functionality. These

pages are:

● Auth0 login

● My Order (Homepage)

● Marketplace (Requests and offers)

● Order description

● Order creation (Buy and sell)

● Auction (Not yet implemented by the product owner)

● About page (User information)

● Menu page (Changing company and log out)

Click this link for a video demonstration: Product demonstration.

3 Project Management
Project management is crucial for a good project process, and it is the glue that sticks the

project together. It gives the group realistic plans, clear objectives, control, and better time

estimation(Lucidchart, n.d). The group has utilized multiple tools to ensure structured and

organized project management. These will be dealt with below, and they are structured into

the following categories: project methodology, time management, communication,

administration, and risk management.

3.1 Project Methodology
The contents of this chapter were in part retrieved from assignment one, in the concurrent

subject IS-305, “Current IT-related Topics, Digitalization and Sustainability”. When choosing

project methodology, there were multiple things to consider, such as the project’s

documentation needs, liability to change, experience with technologies, time sensitivity, and

more. In this project, the group weighed three methodologies against each other; Waterfall,

9/67

https://drive.google.com/file/d/1i1TLQtJam2Hgupw_4w5eGbYM44fk6ByG/view?usp=sharing

Kanban, and Scrum. Each of them has its use cases. Kanban and Scrum are examples of agile

methodologies (Rehkopf, n.d.), while waterfall stands apart as a more traditional approach to

project management (Radigan, n.d.). A summary of the discussion can be viewed in the table

below.

Experience with
technologies

Low The group had no experience with Azure DevOps
and mobile development previous to this project.

Liability to change Medium The web application was in an early stage, and
there was a possibility that features could be added.

Documentation needs High Bachelor's report detailing the process of the
project was to be written in addition to four
assignments in an adjacent subject.

Time sensitivity Low While the project had a clear deadline, finishing the
mobile application was not a priority for any
stakeholders in this process.

Figure 1 - Project Characteristics

During some of the first meetings with the product owner, he said that their web solution was

unfinished and could gain additional features in the near future. This meant that the

requirements could change, meaning another iteration could be added to the project.

Alternatively, it could force the project back to an earlier phase and back to the start phase in

the worst case. This added some uncertainty to the project. Further uncertainty was added

because the group had no experience with mobile development, Azure DevOps, and Auth0.

The alternative of using Github instead of Azure DevOps was given, but the group reasoned

that it would be an excellent opportunity to learn it. This uncertainty bound to the project

rendered the project’s scope too unclear to use the waterfall methodology. A more agile

approach appeared to fit this project better; this is where Scrum and Kanban came into the

picture. While there are plenty of other agile methodologies, only Scrum and Kanban were

familiar enough for the group to consider them.

The bachelor project required documentation of the development process. Because of this

fact, it was evident that the project could not merely consist of programming and

documentation of code. It required documentation of events and decisions, as well as making

plans where deadlines, presentations, and meetings are planned out. Kanban’s flexible

methodology was considered perfect for fixing issues as they occurred. However, in the

group’s opinion, its way of prioritizing and planning work was considered too sporadic for a

10/67

project like this. On the other hand, Scrum was thought to be the stronger of the two in this

area. This is because the framework sets down concrete events, each with a dedicated

purpose. These events were considered beneficial in ensuring a good process and creating

room to document it. As a result of the discussion above, Scrum was chosen to be the project

methodology for this project. Following this, a few choices remained on how to use the

framework.

3.1.1 Roles
Any Scrum process consists of at least three roles (Schwaber & Sutherland, 2020); product

owner, scrum team, and product owner. For product owner Tor Oskar Wilhelmsen was the

natural pick, as he was the primary contact for the project. The Scrum team was the author of

this report, and the Scrum Master was Markus Brødsjø. If the scrum master were ever absent,

Ole Bjørnar Granås would take the lead.

3.1.2 Backlogs
The first choice regarding backlogs was what they should contain. Because the semester

consisted of two subjects, and both were relevant to the same company, the group reasoned it

would improve the overview if both subjects were included in the backlogs. In other words,

all tasks related to everything in the project code, text, and documentation, were to be added

to the backlog.

Three options were considered for keeping the product backlog; Trello, Google Sheets,

ClickUp, and Azure DevOps. Trello was one of the first tools to be suggested by internal

discussion. The group had experience with Trello previously. While its board is intuitive and

straightforward, previous experience has highlighted one main issue concerning this project;

the board's card interface quickly gets messy when adding a few dozen tasks. This project

was not considered huge, but it was deemed large enough for Trello to become cluttered.

Google Sheets was also considered because it allows for a great deal of customization.

However, the last two alternatives, ClickUp and Azure DevOps, appeared more feature-rich

from the get-go. They would let the team focus on the task at hand instead of spending time

customizing a spreadsheet. In the end, the choice was between Azure DevOps and ClickUp.

One week during the pre-sprint was spent testing these tools to decide which to use. Pros and

cons were found with both, rendering the wish to learn how to use Azure DevOps better the

deciding factor.

11/67

3.1.3 Sprints
Starting off each sprint, the group prepared a sprint backlog. Elements from the product

backlog were broken down into smaller subtasks and then put into the sprint backlog. Before

the end of every sprint, the group held a sprint review. In most of these, the group included

the product owner and the group’s mentor as these were both interested parties contributing

with guidance, requirements, and opinions. These sprint reviews also served as a great

opportunity to keep the interested parties updated on the project’s progression. After sprint

reviews, the group gathered for sprint retrospectives marking the end of the sprint. Here the

team evaluated the sprint, discussed positive and negative experiences, improvements from

previous sprints, and areas to improve for the next sprint. Sprint planning, sprint review, and

sprint retrospect were all documented.

If tasks were not completed during a sprint, they were forwarded to the next sprint. While

each sprint consisted of sprint goals, it was not deemed detrimental if tasks were not

completed before the end of the sprint. This is mainly because of the unique situation the

group found itself in, with process and learning outcomes being weighted above product.

The duration of sprints was not set before the sprint planning meetings. Although, its duration

was often briefly discussed in the preceding sprint retrospective. The primary reason which

governed the decision to avoid a set duration for every sprint in the project, was to

experiment with how different sprint lengths and adding tasks with high unpredictability

affected the iterations.

3.1.4 Daily Scrum
Every morning a Daily Scrum was arranged. It generally lasted twenty to thirty minutes.

During these events, the Scrum Master took the lead and asked the individual team members

three questions; what they had done the day before, what they planned to do today, and if

they were expecting any challenges or hindrances. The group often caught itself being

engaged and interested in the challenges people faced the day before, suggesting solutions,

giving advice, or engaging in troubleshooting. This was the primary reason the event often

took up more time than it was supposed to. However, the group thought it best not to curb the

enthusiasm in most cases, except when the problem seemed too complex to solve quickly.

The result was an environment focused on learning, improving, and solving problems.

12/67

3.2 Time Management
Time management can be seen as managing progression made on tasks and other activities

related to the project. It is crucial to plan, schedule, monitor and control activities related to

the project (Wrike, n.d.). Hence, the group used different techniques and tools to carefully

manage the time spent throughout the project. This chapter’s content is about how the group

managed time estimation and organized the time-tracking.

3.2.1 Time Estimation
To accurately estimate time has been a significant challenge due to the unfamiliar tools and

technologies used in the project. The group has never been involved in developing a mobile

application, and therefore purely using the comparative estimation method proved difficult.

Previous development projects consist mainly of web applications, so comparing the two

might not provide the ideal time estimation. Therefore, it was decided that the group would

use two estimation methods in an attempt to estimate with greater accuracy.

The finalized method for time estimation in the bachelor’s project is a mix of planning poker

and comparative estimation. Comparative estimation compares typical projects with similar

past work (Indeed Editorial Team, 2021) while planning poker allows the group to average

the agreed-upon estimation for the Sprint tasks. The reasoning behind the modified version

was to answer the concern above while also creating a solution that enabled agile teamwork

without adding extra administrative workload to the project.

3.2.2 Time Tracking
Clockify is a time-tracking tool that offers an organized platform for time-tracking, with

features such as timekeeping, reporting, time management, and more (Features, n.d.).

Clockify allows the user to select a project, then choose a sub-task within a said project,

followed by a task description. In conjunction with standardization rules, these features made

the time spent on administration very brief, which gave more time for completing tasks.

Figure 2 - Clockify example

13/67

Each member was responsible for tracking time and using the standardized setup mentioned

above. This allowed time-tracking to be a part of the documentation, making it easier to do

less overall administrative work and hold other members accountable for their tasks.

Another great feature was the ability to visualize the previously tracked time. It gave an

insight into trends that occurred during the project; an example of this is that the week started

strong but slowly trended downwards when approaching Thursday and Friday. The ability to

gather these statistics gave a better insight into how to tackle unseen problems within the

group.

3.3 Communication
Communication is essential to achieving good results in any project (Joubert, 2020). The

group has communicated in both digital and physical contexts throughout this project.

Discord was used during internal digital communication, utilizing its text, voice, file-sharing,

and screen-sharing features. However, Microsoft Teams was used during external meetings,

meaning communication including product owner and or the group’s mentor. Additionally,

some communication took place with the group’s mentor through emails. Physical meetings

mainly took place on campus, with one exception during the startup phase, where the group

met up with the product owner to become familiar.

3.3.1 Discord
As mentioned, Discord was used for internal digital communication. The primary reasons for

using Discord were the group’s familiarity and daily use of it. Using this tool meant that

getting hold of group members for comments, help, or sharing information was easier.

Discord was also used to share links to documentation or sources and generate quick

consensus outside of meetings. Features like pinning messages, splitting communication into

separate channels depending on the topic, and screen-sharing were invaluable for making the

communication structured and efficient throughout the project.

3.3.2 Microsoft Teams
Microsoft Teams was the product owner’s preferred tool of communication. Oxidane uses

Microsoft teams as their primary communication platform within their organization. The

product owner suggested that the group should contact him over teams to get quick responses

to questions. Therefore, the group and the product owner actively used a shared teams-chat

14/67

throughout the project. Status meetings and other external meetings were held over Teams for

the product owner's convenience.

3.3.3 Physical meetings
Physical meetings on campus took place every week, with few exceptions throughout the

semester. These meetings were primarily used to discuss, communicate, and plan out topics

with high complexity. In the group’s experience, physical meetings significantly contributed

to creating essential discussions around the decision-making and planning process. The

tradeoff was that the process took more time and could drain some of the members’ social

batteries. This tradeoff was, in most cases, considered worth it.

3.4 Administration
When it comes to administering a project, selecting the right tools could be essential for the

project's progression. The tools for administration in this project were Azure DevOps as a

project management tool, Google Drive for storing documentation, Clockify for time

management, and ClickUp for documenting the day-to-day activities.

3.4.1 Azure DevOps
Azure DevOps is a developer service used for planning, developing, building, and deploying

applications (Azure DevOps, 2022). It was Oxidane Venture’s platform of choice for

developing and collaborating, and therefore it was preferred that the group used the same

platform. Azure DevOps gave the product owner unique insight into the project's progression

and allowed ongoing feedback.

The platform offers a multitude of features, with the main ones used in the project being

Overview, Boards, Repositories and Pipelines. Overview feature delivers functionality such

as a Wiki, where the group has created guidelines for the project (Azure DevOps Wiki, 2022).

These guidelines include cheat sheets, best practices, and other miscellaneous documentation

Boards feature delivered functionality such as Backlogs and Sprints (Azure DevOps Boards,

2022). The Backlog feature had some use in the early phases of the project as a planning tool

but did not adapt well to the Scrum framework due to its limited functionality. The Sprint's

feature offered more flexibility surrounding Sprint planning and execution, as well as

adapting to the Scrum framework. In the later stages of the project, the Sprints feature ended

up replacing the Backlog feature.
15/67

Repos acted as the main codebase for the mobile application during the project. With features

such as Branches, Commits and Pull requests, it allowed for collaboration to build better code

(Azure DevOps Repos, 2022).

The Pipeline feature delivers functionality such as Pipelines, Environments, and Library

(Azure DevOps Pipelines, 2022). The group wanted to explore the functionality offered by

the Pipeline feature more, but due to a lack of resources, it could not be prioritized. This

feature will be explained later in the report.

3.4.2 Google Drive & ClickUp
Google Drive and ClickUp were the preferred services for document management and

storage of miscellaneous files. Cloud-native apps enable the group to work seamlessly and

efficiently in real-time, allowing multiple users to collaborate and cooperate on the same

document.

Google Drive is a cloud storage service that offers the ability to share documents and files. In

addition, Google Drive offers excellent flexibility due to being free and accessible in the

browser (Google Drive, n.d.). ClickUp is a cloud-based collaboration and management tool

that offers various features for communication, collaboration, task assignments and more

(Evans, 2020).

Using separate platforms for organizing documents was a conscious choice because of

ClickUp’s poor performance while collaborating between multiple users simultaneously.

Therefore, ClickUp was deemed more optimal for storing and organizing smaller documents,

while Google Drive was more suitable for longer and more structured documents, where

collaboration often occurred.

3.5 Risk Management
Risk management is defined as all measures and activities carried out to manage risk (Aven,

2015, s.4). The analysis process is a central part of risk assessment, and there are several

ways of presenting a risk analysis(Aven, 2015, s.15). The group decided to create a risk

matrix to identify and describe risks associated with the project, and the risks that could

prevent the project's goal from being accomplished.

16/67

3.5.1 Risk Matrix
The risk matrix establishes a picture and an overview of possible risks, risk probability,

consequences, and counteractive measures to deter or handle said risk (Aven, 2015, s.45-48).

One of the product owner's suggestions was to update the risk matrix with possible risks for

each new Sprint. These reevaluations would happen during sprint planning to see if there

were any new elements to add. Furthermore, it was decided not to delete any of the risks from

the previous sprint due to the chance that they might appear again.

The group experienced several event risks becoming a reality during the project. An example

of this was the pandemic; it was highly likely that group members could be infected during

the project. If group members were to become infected, it could result in delays and

complicate cooperation. Therefore, this is something the group must take into account.

However, the group overcame these issues by following the risk matrix and updating it for

every sprint.

Risks Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Sprint 6 Sprint 7

Talking takes place
instead of work when
meeting in person

12 12 12 9 9 6 6

Group forgets a
deadline 5 10 5 5 4 4 9

Group member could
do permanent
damage to repository

16 8 4 4 4 5 4

Group member does
not get enough sleep 12 8 8 8 8 12 12

Group members could
work less effective at
home

1 8 8 8 8 3 3

Group member could
become sick 8 6 9 9 9 9 5

Computer related
does not work as
intended

12 6 6 9 9 8 6

Too stressful for the
individual group
member

10 6 6 6 6 3 3

Group member could
leak out secrets 8 4 4 4 4 4 4

17/67

Group member
overslept 4 4 4 4 4 4 8

Late answer from both
mentor and product
owner

6 3 3 3 4 6 2

Work does not get
documented NaN 4 4 4 4 4 4

Implementation of
code does not work
as intended and uses
a lot of time

NaN 16 16 16 8 6 4

Group member
wastes time on
irrelevant tasks

NaN NaN 2 2 2 6 4

Waste time on
administrative
work

NaN NaN 2 2 2 4 2

Fished system is not
working
correctly

NaN NaN NaN 10 4 4 2

Failing to finish all the
tasks set up for the
sprint

NaN NaN NaN 8 8 8 6

Group does not
complete the
the report in time

NaN NaN NaN NaN 8 8 6

The group fails to
deliver
the report

NaN NaN NaN NaN 5 5 12

The product fails to
meet the product
owner's expectations

NaN NaN NaN NaN 4 4 2

Figure 3 - Risk matrix

18/67

Part 2 - Analysis, Technology & Architecture

4 Analysis
Previously, in chapter 2.1, the project requirements were briefly laid out. In this chapter, they

will be explored and interpreted in-depth. First, the requirements will be presented and

explained. Then a table with the prioritized design criteria will be presented, followed by an

explanation of the prioritization. After that, follows a set of use case models, showing the

internal logic of the application. Based on the requirements in this chapter, technologies and

architecture were chosen for the project, these are presented in chapters 5 and 6 respectively.

4.1 Requirements
The six requirements set by Oxidane were:

● Create a native mobile application of the web application Fished.com

● Use Fished’s development environment

● Use Fished’s REST API

● Use predefined design elements

● Use Auth0

● Create unit-tests

● Allow users to change active company in the mobile application

Fished.com is a web application functioning as a marketplace for buying and selling Fish.

The web application makes calls to a backend through a REST API, these calls can be viewed

through the network tab in the inspect tool of a web browser, however in order to gain access

to the application one first needs to be registered. The group registered test users which were

admitted to Fished.com’s development environment by Oxidane. In this environment, the

group could interact with and test the application. This made it possible to develop an

understanding of how it functioned, and how the mobile application should function. Based

on these tests the use cases in chapter 4.3 were made.

In order for buy and sell orders to be available from both the web and mobile applications,

they would have to use the same backend. This made using Fished’s APIs a non-negotiable

requirement. To request from and post to the API, a valid Auth0 token was required. This

19/67

meant that Auth0 authentication was required for the application’s most basic functionality.

Thus, the requirement of implementing Auth0 into the mobile application was also

non-negotiable. Inside the web application’s settings page the product owner noted that in the

mobile application, the user should not be allowed to change any account information.

Change of account information was reserved for the web application. However, the user

should be able to change the active company, meaning the company the user was currently

conducting for.

The product owner expressed that the predefined design elements, meaning colors, buttons,

logos, and fonts should be used. These were supplied both in the form of high-fidelity

mockups and the web solution itself. Some room was left for interpretation, as long as it

could be argued for, as long as changes did not break familiarity or consistency. One of the

concrete examples the product owner provided of things that could be changed was two

graphs on the “My Orders” page. He did not consider either of these graphs to be essential

whatsoever to the mobile application. Finally, the last requirement was creating unit tests.

Although the product owner did not expect full test coverage, he expected that at the very

least, some components and units should be tested. Preferably, tests were to cover all core

functionality.

4.2 Design Criteria
In order to create a common understanding of the product requirements, prioritization of

design criteria was performed. Design criteria and their definitions were retrieved from the

book Object-Oriented Analysis & Design written by Mathiassen et al. (2018, p.180). These

design criteria were used to make decisions for technology, architecture and prioritization in

the project. The table below displays the criteria prioritization. Below the table, is a short

description of the most important criteria.

20/67

Criteria: Very

important

Important Less

important

Irellevant Easy to

implement

Usability x

Security x x

Efficient x

Correct x x

Reliability x

Maintenance x x

Testability x

Flexible x x

Comprehensible x x

Reusable x

Portable x

Interoperability x

Figure 4 - Design Criteria Table

4.2.1 Security
The first criterion with high prioritization was security. It is concerned with who has access to

read and write data in the system (Mathiassen et al., 2018, p. 180). It was considered easy to

implement, primarily because the application was completely dependent on Auth0 for

authorization. If the user failed to be authorized by Auth0, it would be impossible to retrieve

any data of importance from Fished.com’s APIs. Oxidane was responsible for the

implementation of Auth0 in their backend, and therefore most security-related issues would

be out of this project’s scope. In other words, if Auth0 was successfully implemented, most of

21/67

the security-related issues would be considered solved. However, it was still important to test

the output and functionality of unofficial packages if they were to be implemented, to make

sure dubious code was not included in the app. There were two reasons this criterion was

rated very important; first Auth0 was a requirement, and second, the application dealt with

business-sensitive data and funds.

4.2.2 Reliability
The second criterion with high prioritization was reliability. In essence, it means that the

system should provide the same expected output every time given identical input (Mathiassen

et al., 2018, p. 180). Due to the system being a marketplace, it is paramount that user input is

interpreted and sent correctly to the backend. If the system failed to treat the customers’

information correctly, its reputation would be badly damaged. Additionally, the user should

never have to be insecure whether the data they appear to be interacting with on-screen is the

data being interacted with. For instance, if they order an amount of fish through the

application, then the correct amount, type of fish, price, etc. should be displayed and

processed. The mobile application would be unreleasable without this criterion in order.

4.2.3 Testability
The third criterion with high priority was testability. Testability ensures that a system

functions as intended (Mathiassen et al., 2018, p.180). Testability was a clear requirement

from the product owner, rendering it very important. In the group’s opinion, regardless of

testing being a requirement, the system’s nature rendered testability a high priority. The

system contains many operation-critical functions, and failures or inconsistencies would be

detrimental to the system’s integrity and user base. Testing among other things can help

increase the system’s reliability and maintainability (Myers et al., 2011, p. 6).

4.2.4 Interoperability
The fourth and final criterion with high priority is interoperability which refers to the

system’s ability to work together with other systems (Mathiassen et al., 2018, p.180). This

criterion was essentially a requirement from the product owner expressed through having to

use Fished’s API and Auth0. If the application was unable to work together with Auth0 it

would be unable to function. If it was unable to work together with the API or web

application, frequent crashes, inconsistent actions, results, or faulty transactions could be

expected, and once again the product would be unusable until made interoperable.

22/67

4.3 Use Cases
To illustrate the different functions of the mobile application, four use cases were created. A

use case diagram “shows the relationships among actors and use cases within a system”

(Ambler, 2013). It adds value to the project by easily explaining through a model how the

system responds based on actors' behavior (HHS, 2013). The use case diagrams which were

created do not deal with every step of the system in extensive detail. Instead, they provide an

overview making the flow of events easily available, so the group has a common model for

system events and actions based on user interaction. The Marketplace use case was the most

complex of these use cases, and it is presented below, while the rest can be found in appendix

3. These use cases are presented below: “Login and Registration”, “Marketplace”, “My

Orders”, and “Menu”.

Figure 5 - Use Case Marketplace

23/67

5 Technology
The group spent numerous hours exploring, testing, and carefully considering the different

technologies during the pre-sprint. In addition, after thorough discussions with the product

owner, mentor and other professionals, the group landed on a decision. The chapter contains a

short introduction to Auth0, a deliberation about platform alternatives, and further details

about Flutter and Dart.

5.1 Auth0
One of the requirements from Oxidane Venture was Auth0 to authenticate users. It allowed

the group to focus on other aspects of software development instead of using a lot of

resources to build complex security solutions from scratch. Auth0 is an adaptable

authentication and authorization platform that offers several different authentication methods,

such as multi-factor authentication (MFA), single sign-on (SSO) and email/SMS

authentication (Auth0, n.d). The deliberation about the design criteria for security can be read

more about in 4.2.1.

Figure 6 - Sequence Diagram Auth0

24/67

The group created a sequence diagram before implementing Auth0. This was done to

understand better and visualize the Auth0 process; it also assisted in the implementation

process.

5.2 Platform Alternatives
Choosing which technology to develop the mobile application was done during the pre-sprint

while the group figured everything out. It landed between two categories, native, with

languages such as Swift for iOS and Kotlin for Android or cross-compiling platforms such as

Xamarin and Flutter. The group had limited knowledge about these categories and decided to

ask other people with more knowledge and experience. The first discussion was with the

product owner, and he emphasized doing a simple test of the alternatives and then coming to

a conclusion of what the group thinks fits the project best. The other talks were with the

mentor and a professional developer; both had concerns due to encountering problems with

cross-compilation before, especially when it came to implementing specific features, working

on a lower level of abstraction, and the toolkit had some issues that needed ironing out.

The simple test had some criteria when testing the languages and platforms. These were to

check how easy it is to set up an application from the ground up, what the toolkit offers, and

whether it feels familiar to other languages used in the past. The native languages were

excluded relatively quickly due to the group's internal requirement of wanting the mobile

application on both platforms. Besides native, both of the cross-compiling platforms were

easy to use and set up because the group was already familiar with similar programming

languages and paradigms. Another critical factor when deciding on a platform was the

documentation and community surrounding it. Surprisingly, both had decent documentation

and support from their respective platform, the only essential difference was their age.

Xamarin is a much more mature platform that has been ironed out because it came out in

2011 (Ridland, 2021) , while Flutter came out in 2017 (Flutter, n.d.). The most significant

contributing factor in choosing Flutter over Xamarin is that MAUI will replace it at some

point in 2022 (Ramel, 2021). Therefore, Flutter has been deemed a safer option in making a

future-ready application.

Another thing to factor in is requirements from a technical standpoint. The analysis is

discussed earlier in the report; thus, this part will not contain a deeper investigation. The app

has to support mobile platforms such as iOS and Android. These platforms come with

25/67

external interface requirements for software and hardware. Mobile software and hardware

requirements are interchangeable due to the operative system constraint when creating a

mobile application for iOS and Android platforms. The hardware is dependent on what

operative system it can support; dependent, each of the respective platforms, decides this. The

baseline for the mobile application was determined by using pre-existing requirements from

other mobile applications with close to the same feature set (Finn.no). Thus, the baseline

requirement for the operative system is iOS 13 (Apple, n.d.) and Android 7 (Google, n.d.).

At last, the group decided to check Google Trends to see how popular each of the respective

platforms or languages scored. As shown below, it is clear that both native languages, such as

Kotlin and Swift, have been doing quite well throughout the years. On the cross-compilation

side of things, it is another story, Xamarin is currently on a downward trend in the past years,

but Flutter is flourishing on the top and is still increasing since its release (Google, n.d.).

Figure 7 - Google Trends

5.3 Flutter & Dart
Flutter was the chosen framework for developing the mobile application. Flutter is an

open-source and multi-platform framework based on the programming language Dart that

Google made. One of the main features of Flutter is that it supports cross-compiling for both

Android and iOS devices (Flutter, n.d).

26/67

One of the many factors for choosing Flutter is the programming language the framework

builds on. Dart as a programming language is similar to the syntax seen in Java, which is well

known among the group members and simplifies learning as the group can recognize parts of

the language. Flutter also provides a wide array of widgets with functionality such as styling,

visual effects, interaction, and more. These widgets are easily modified and offer great

flexibility when building applications for different phone types and operating systems. There

are also plenty of packages developed by the Flutter dev team and other developers. These

packages are quick and easy to implement and offer thorough documentation, making them

easier to explore and work with. The state management offered by Flutter has also proven to

be valuable for the project and has been used throughout the application. These were all

crucial parts when choosing to use Flutter & Dart to develop the mobile application.

6 Architecture
This chapter describes the architectural design, and this process bases itself on understanding

how a system should be organized and designing the overall structure based on that

understanding. The output of this process is an architectural model that shows how a set of

communicating components are organized in a system (Sommerville, 2011, p. 148). The

following chapters describe the chosen design pattern based on design criteria and the

deployment diagram.

6.1 Design Pattern
In the decision-making process of choosing a design pattern, the group considered three

alternatives. These alternatives were MVVM (Model-View-ViewModel), MVC

(Model-View-Controller) and DDD (Domain Driven Design) pattern.

It was decided to conduct further research to strengthen the group's knowledge. The group

compared the three design patterns against each other and weighted them based on impacted

design criteria; maintenance, testability, and reusability. Additionally, the group added

another subjective criterion which referred to how easy the group members thought the

design pattern was to implement; ease of use. After careful consideration, the group decided

to use the MVVM pattern for the project. MVVM is a software architectural pattern that

helps to separate our graphical oriented code from business logic (Microsoft, 2021).

27/67

The maintenance design criteria are important because the Fished app is an extension of the

web solution. Due to that reason alone, it should be easy and cost-effective to maintain for

Fished in the future. The MVVM design pattern is the appropriate choice due to being highly

modular and testable (O'Reilly, n.d.). Testable systems are easier to maintain because the

effects of changes are highlighted when tests are run; this is also true when refactoring is

done. Testable systems are easier to test. Furthermore, testability is a requirement from the

product owner, thus benefiting from these benefits mentioned above.

Reusable is the easiest of the design criteria to fulfill. The MVVM design pattern allows for

parallel development of a UI and the building blocks that make it easier to reuse components

while abstracting away the glue from the View and business logic, making it easier to

modularize (O'Reilly, n.d.).

6.2 Deployment Diagram
The deployment diagram shows an overview of the chosen technologies and the architecture

set up in the context of the Fished environment (Ambler, 2004, p. 308). The group decided to

create a deployment diagram to get more insight and understanding into how the Fished

system and Flutter will communicate with the existing web application.

Figure 8 - Deployment Diagram

7 Design
Oxidane Venture already had hi-fi mockups for the Fished.com application designed for web

and mobile applications. These were made in the design tool Figma, to which every team

member was granted access. The group was free to change the mockups where necessary and

where they would contribute to a better product. However, the product owner expressed that

the design should not deviate too much from the web application. As the group already had a

28/67

good starting point, a decision was made to exclude some processes from the design phase

such as sketching, wireframing and prototyping.

The mockups lacked a login page, and the web application’s profile page contained functions

that were not relevant to the mobile application. Therefore, a simple login page and profile

page were created to fill this gap. In addition, the group thought it necessary to alter the “my

orders” and “market” pages to better fit a mobile screen. Some other changes were made to

the design of the application, but they are not worthy of note. Preceding the work done on

designing and redesigning the mobile application, some work was put into understanding the

functionality and context of the system. This work is described in chapter 4.1 about

requirements.

7.1 Design Principles
User experience (UX) and user interface (UI) are all about the total experience when a user

operates a digital product, service, or system (KnowIt, n.d.). In some cases, the group

concluded that the mockups in Figma and web app pages do not fulfill the properties to be

considered as good UX and UI. To achieve an application providing a good user experience

and user interface, some of Benyon’s 12 design principles have been applied. Benyon’s

principles are grouped into four main categories - learnability, effectiveness, safety, and

accommodation (Benyon, 2019, p.116-117).

From Benyons four design categories, learnability is the primary category that is applied in

the system. Learnability consists of design principles “concerned with access, ease of

learning, and remembering” (Benyon, 2019, p.117). One of these design principles is

visibility. This principle is about ensuring functions and that the system is currently visible to

the user (Benyon, 2019, p.117). Adjusting the web app design into a significantly smaller

mobile application format has been an aspect of creating visibility. The web design contains

information, input fields, figures and pictures which were challenging to implement into a

mobile format and still achieve high visibility.

As mentioned earlier, the group decided to take inspiration from the web application’s design

and improve it. Many of the symbols, colors and layouts were reused in the mobile

application design. The idea behind this decision was to match the web design with the

mobile application. Having a too big contrast between the mobile and web design could lead

to an application where the user does not feel any familiarity and is misled regarding

29/67

functions. This decision is about ensuring high learnability and recognizability, which creates

a good user experience making the system satisfying to utilize (Benyon, 2019, p.104-105).

8 Quality
Quality can be complicated to describe as it varies between products, services, individuals,

and organizations. In some instances, quality can be described as performance to standards,

and in others, it can be described as meeting the customer's needs (Reid & Sanders, 2012, p.

162-163). The definition of quality for this project has been defined through internal

discussion and conversation with the product owner.

8.1 Definition of Quality
Defining the group's definition of quality has been necessary before planning any activities,

or creating any quality requirements. Quality in respect to this project has been defined as the

system's ability to satisfy the product owner’s requirements for the system relating to the

product and the process.

8.2 Quality Requirements
Securing quality has been ensured by planning activities to achieve a product that fulfills the

quality requirements. Standards and routines have been defined within the group to raise

quality; these standards have worked as a basis in terms of supplying the project with

manuals, instructions and control actions. Examples of this are; the “definition of done”

(DOD), code standards, and miscellaneous cheat sheets for development. These standards

have been followed to the best of the group's abilities, and have contributed as a basis for the

quality requirements.

The “definition of done” (DOD) is an agreed-upon set of terms that must be fulfilled before a

task can be considered complete (Madan, 2019). In principle it is the official gate, separating

things from being “in progress” to “done”.

After internal discussions, the “definition of done” has been split into three formats: one for

the administrative process, one for the development process, and a dedicated guideline list for

reports and assignments. Separating the guidelines of the “definition of done” was done out

of necessity, as the requirements for the administrative, development and report-related tasks

are different. For the Definition of Done see appendix 4.

30/67

8.3 Assessment of Quality
Assessment of quality can be complex without predefining what quality is. The “definition of

done” mentioned above has played an essential part when approaching how to assess quality

in administering, development, and report writing. Using the “definition of done” can assist

in setting the standard for quality and ensuring that a task satisfies the quality requirements

before being defined as done.

An example taken from the “definition of done” for development is that at least two group

members must review any pull request before a merge can occur. Another example from the

“definition of done” for report-related tasks is that every group member has to proofread and

give feedback before a task can be defined as done.

Sprint reviews and retrospectives have also played a part in assessing quality. The Sprint

review enabled the group to have discussions and obtain feedback from the product owner

and mentor. Retrospectives allowed the group to reflect on the positive and negative sides of

the sprint. These reflections gave the group a better insight into changes that had to be made

to achieve a better product.

8.4 Quality Assurance
Quality assurance or QA for short can be described as any systematic process that helps

determine if a product or a service meets the specified requirements (Gillis, 2019). This

project implements QA activities to ensure that the product and its services meet the needs,

expectations, and requirements. These activities are elaborated on in further detail in the

following chapters.

8.4.1 Code Standard
A code standard can be described as guidelines set for a developer to follow when writing

source code (Code Standards, n.d.). The internal Azure DevOps wiki previously mentioned

contains a set of guidelines created for development in this project.

These guidelines include best practices, naming conventions, and more. Examples for these

guidelines are: The use of descriptive names for variables and methods, avoiding writing

more code than necessary, and following best practices for Flutter and Dart as closely as

possible (see appendix 5).

31/67

By following these guidelines to the best of the group's abilities the aim was to create code

with high quality, using a predefined baseline that assists in keeping the code maintainable

and readable.

8.4.2 Testing
Testing is vital for any successful development life cycle to ensure that a system works as

intended (IBM, n.d.). As mentioned in chapter 4, writing tests was a direct requirement from

the product owner. Both the programming language Dart and creating practical unit tests were

relatively new concepts to the group, hence the lack of priority of testing in the early sprints.

However, because the application is a marketplace that handles personal data and real

currency, this entails an additional responsibility upon the development team. There is a

lower acceptance for significant errors, as it could lead to great consequences such as

dissatisfied users and a loss of customers if something were to go wrong. Therefore, testing is

crucial to verify and validate the application before an eventual release.

Testing during the project was primarily oriented around the exploratory, unit, and manual

testing. As the general experience level surrounding testing was low within the group,

something needed to be done. By conducting research and watching guides on YouTube, the

group managed to build a greater understanding of how to test and why testing is essential.

The exploratory testing was primarily done using Postman and Swagger; these are software

for developing and testing APIs. Exploratory testing helped the group map all the required

APIs needed for the mobile application. This step was crucial when creating Models for the

MVVM pattern, as fetching APIs data requires that the structure and data types be identical to

Fished’s Data Transfer Objects (DTOs).

The unit testing focused on testing services that fetched data from the APIs and mocked the

data to ensure that the function’s output was correct according to the mocked preset. Output

testing has been critical to ensuring that the data displayed to the user is accurate. Flutter

offers an extensive library of packages. The Mocktail package has been used as a template for

unit testing, as it provides plenty of functionality and documentation while being easy to

implement and use.

Manual testing was the go-to method to use as it gave a significant return in relation to the

effort required. The testing was done using emulators for the respective platforms or

installing the application on smartphones in conjunction with developer tools offered by

32/67

Flutter. Installing the mobile application was a more suitable solution when the focus was on

testing the whole mobile application instead of just testing a particular function.

8.4.3 Version Control
Version control is the practice of tracking and managing changes to the codebase (Atlassian

Bitbucket, n.d.). As mentioned earlier in the Azure DevOps chapter, it was the preferred

platform for the product owner and was chosen as the version control platform for this

project.

At the start of the project, the group had a workshop with the product owner. As the process

has been the project's main focus, the group has been open to every suggestion made by the

product owner. Using Rebase & fast-forward instead of the standard merging practice was

one of the suggestions made by the product owner during this workshop. As the group was

open to learning, this suggestion was implemented into the group's practices. The main issue

with the implementation has been that Rebasing could potentially be more destructive in

practice and thus require a more thoughtful approach. Hence, strict rules and guidelines were

created to counteract any mistakes, some examples being the use of a modified version of

GitFlow as a branching model, Git cheat sheets and more(see appendix 6). The topic

surrounding choices of version control management, GitFlow and branch modeling will be

further elaborated in chapter 10.4.2.

8.4.4 DevOps
DevOps is a mix of development (Dev) and operations (Ops) that combines cultural

philosophies, practices and tools to create a superior process for software development

(Azure, n.d.).

In the early stages of the project, there was an attempt to implement continuous integration

(CI) by using the Azure DevOps Pipelines to automate the build process and run through unit

tests. The implementation was successful in the earlier phases, but as the project progressed

and other tasks had to be prioritized, it became harder to maintain. The lack of maintenance

and CI not being a requirement from the product owner resulted in it being down-prioritized

and semi-functional.

Using Azure DevOps for the project made it more accessible to share the install file from

artifact storage and let the product owner be more up to date on the development. Artifact

33/67

storage lets developers share their code efficiently and manage all their packages from one

place (Azure DevOps, 2022).

The figure below shows a simplified DevOps workflow used for the project. It considers the

continuous delivery phase, but it was not relevant due to reasons stated earlier.

Figure 9 - DevOps Flow

8.4.5 Workshop
Workshops were put together whenever it was deemed necessary. These workshops enabled

the group to remove uncertainties with a supportive team-building exercise. As a result, it

enabled the group to participate in discussions, whether technical or analytical. It also acted

as a great opportunity for the product owner to engage in the project and partake in the

progression and development of the project.

34/67

Part 3 - Process

9 Sprints
The following chapter describes the sprints from the project in detail. Every sprint including

the pre-sprint is accounted for, and important elements from each sprint are reflected upon.

9.1 Pre-Sprint (10.01-30.01)
Before the project could be set in motion, there had to be a foundation of planning and

preparation. First, there had to be an understanding and documentation of the scope, the

architecture, and the requirements. Next up were the major decisions surrounding project

management and agreements regarding standard procedures, project goals, and choices in

technologies and tools. These activities happened during the pre-sprint that spanned from the

10th of January until the 30th of January.

The pre-sprint started with several digital meetings between the group members, where the

issues mentioned above were introduced and discussed. The group agreed upon the

conditions of the group contract, and the group prepared questions for the semester's first

meeting with the product owner.

The project's scope was dynamic, and the focus was primarily on the process and the

argumentation of choices taken during the project. The task was to create a mobile

application for the Fished platform based on the already existing web application. The group

got access to the web applications development environment, the documentation of its APIs,

and a design for the mobile application. It was also a requirement from the product owner to

use Auth0 for user authorization, as a token generated by Auth0 was required to

communicate with the APIs. Most of the application logic is done through communicating

with their APIs, meaning the application would be dependent on using asynchronous

functions. In addition to the project's core, the product owner wished to add ease-of-use

functionality to the application. Examples of this functionality were face recognition and

fingerprint recognition for a more effortless login experience.

The group was given the freedom to choose relevant technologies for the application

development. However, the highlighted question was whether to use a cross-compilation

35/67

language framework such as Flutter or Xamarin or develop natively for iOS or Android

through Swift or Kotlin.

Based on the information presented in the paragraph above, the group split up to learn which

technology to use. Two members chose to learn about Flutter, two about Xamarin, and the

last one looked into Swift. When weighing the technologies up against each other, the group

focused on five key features; ease of use, syntax, performance, compilation time, and

deployment on the phone. Ease of use should be interpreted as if the framework and toolkit

are easy to learn and powerful. Syntax, in this case, means if the programming paradigm is

familiar and whether functions are wordy. By performance, the group means that the

compiled application has good test results and that the application's response time is well

within the three main time limits as described by Nielsen (Nielsen, 1993, p. 135. The group

was aware that the project's code and API response time would be the main sources of delay.

However, having it further delayed by a potentially slow framework was considered a risk,

particularly on slower hardware. While short compilation time is not essential to the

application's quality, it is a luxury in projects requiring frequent recompiling. Finally, when

looking at releasing it for the phone, the application needed to behave and look as similar as

possible to the application on the emulator.

The group made the final choice regarding technologies at the end of the pre-sprint, where the

choice ended on Flutter/Dart. As many aspects of the projects were unfamiliar to the group, it

dedicated much time to explore new technologies, design patterns and various elements

related to the project. While the effort dedicated was high, it quickly became apparent in later

sprints that merely the group had scraped the surface, and there was plenty new to learn.

In the pre-sprint retrospect, the group highlighted some challenges. The first challenge was

all the different choices that the group had to make on an uncertain basis. Of course, there

was no way to know if the choices were good, but the time spent exploring during the

pre-sprint certainly made some of the choices easier to make. An example of this is the

choice of moving forward with Flutter and Dart, as this could have a significant impact on the

project.

The second challenge was that the group experienced it as challenging to avoid chit-chatting

while sitting together. To avoid breaking each other's concentration and to get more work

done, the group decided to experiment with splitting into smaller units whenever meetings

were over.

36/67

Other challenges included that the installation of Flutter was not cooperative with all the

group members' computers and that the unfamiliarity with the project's contents caused some

uncertainty. In the following sprint, the group started working on developing and setting up a

proper project and report structure.

9.2 Sprint 1 (31.01 - 20.2)
Sprint one began with a physical meeting at Oxidane Venture’s offices in Kristiansand. All

group members and the product owner were present at the meeting, and it was used as sprint

planning. During the planning, backlog items were prioritized and added to the sprint backlog

with the assistance of the product owner. Based on internal discussions and dialogs with the

product owner, the defined goals of sprint one were Auth0 implementation, developing

front-end views, structuring DevOps, a time tracking policy, a report structure, a project

structure and defining a definition of done policy for tasks. The group achieved every sprint

goal except the Auth0 implementation during the three-week-long sprint.

In the development aspect, the group started with the project's structure. First, the group

chose the design pattern MVVM (see chapter 6.1 for reasoning) and created the folder

structure based on the MVVM design pattern. Then, in the sprint planning meeting, Auth0

and authentication was a task the group needed to finish before the app could use the APIs.

As mentioned in the pre-sprint, the APIs require a token generated by Auth0, which sets the

implementation of Auth0 as a high priority. The group researched how to implement Auth0

with a Flutter application, which proved to be more challenging than initially expected. The

group used the Fished web application and used the inspect tool in the browser to monitor

network activity on the web application. Using these tools gave insight into the different APIs

called by the web application and helped gain insight into how the mobile application could

potentially use the same APIs. As a result, the group learned more about how Auth0 and the

Fished web application work.

The time tracking aspect of sprint one was documented using Microsoft Excel before

switching to Clockify, which offered a more suitable solution for the project. Next up, the

group spent a reasonable amount of time setting up the repository, the backlog, and the

version control in Azure DevOps. The group had minimal experience with Azure DevOps, so

setting up the different features was a challenge at first.

37/67

Sprint one was planned to last two weeks, but the group extended the sprint from two to three

weeks due to a group management meeting with the product owner and the supervisor.

During this meeting, the group showed the current state of the Auth0 implementation, and the

product owner was optimistic about the progression. At this stage of the project, the workload

per group member was set at 35 hours a week. However, it became apparent that 35 hours per

week was unrealistic, and it was adjusted down to 30 hours during the sprint review. This

adjustment was more realistic and aided the group in making better time estimations. During

the sprint, the group also created CI for the app with Azure DevOps's tool Pipeline. CI/CD

was not a requirement for the product owner, but there was some interest in learning about

CI/CD. The group got a good start with the CI and pipelines through the sprint.

9.3 Sprint 2 (21.02 - 13.03)
As sprint two started, there was a desire to add more functionality to the application.

Unfortunately, the implementation of Auth0 had not been successful, and the group had to

contact the product owner for some assistance. After a meeting with the product owner and

some more time spent developing, the group finally implemented Auth0 successfully. The

successful implementation led to a significant boost of knowledge as the general

understanding of how the product owner wanted the application to work was strengthened.

The group completed more of the backlog development tasks, leading to an application with

front-end login pages, a my-page for the user, and routing between the application pages.

There was also time for some experimenting with extracting information from the APIs, and

to test the APIs, the group used Postman.

There was also a big focus on the project report and documenting processes during the sprint,

with significant changes to the report structure. Changing the report structure was done

because the group considered it to lack clarity. The solution was to have more describing

chapter headings and split more of the content into several subchapters. It is also worth

mentioning that the group members produced models during this sprint. The first model was

a deployment diagram, and the second was a requirement specification.

In the sprint review, the team agreed that the Auth0 implementation had required too many

resources. If similar problems occurred later in the project, it was determined to ask for help

sooner. There was also a change in tools used for document storage. For document storage,

the group initially used ClickUp, but after encountering problems with multiple users

38/67

collaborating on the same documents, the group decided to use Google Drive. ClickUp still

stored all the documents related to scrum activities, such as daily scrums, reviews and

retrospectives, while Google Drive stored large and structured documents.

9.4 Sprint 3 (14.03 - 03.04)
As sprint three started, the focus was on application development and quality assurance. Four

out of five members were assigned to develop the application during this sprint. The tasks for

development in this sprint were to give the user the ability to view orders, create a homepage,

create a new buy-order, and the ability to change their company. As the functionality slowly

increased, it was a fitting moment to start implementing various code tests, which is also an

important activity for quality assurance. Manual testing was the primary way of testing until

this point, but the group wanted to implement more automated testing. Finally, the focus

shifted towards unit testing, so the group tried to create unit tests for the functioning

functionality. Unit testing is something the group has barely done throughout the study, so it

was pretty hard to start.

Therefore, conducting research and writing good tests was characterized by trial and error

and has shown to be time-consuming and challenging. As a lot was happening in the project,

the group figured the codebase needed refactoring, giving the entire group a prime

opportunity to review the code together and gain a common understanding. Refactoring the

codebase also made it easier to read and more manageable for future development. Midway

through the sprint, the entire Fished development environment had issues, resulting in all the

APIs being down for a while. Unfortunately, this was an unforeseen issue, and the group

needed to rethink what tasks to do without access to the APIs. The result was an updated risk

matrix, where the group added technical difficulties from parties over which the group had no

control.

9.5 Sprint 4 (04.04 - 10.04)
The goal of this sprint was to complete the remaining tasks from the previous sprint.

However, as Easter was coming up, the group decided to make this sprint short and focused

on finishing the tasks remaining from the last sprint and a few others added to the sprint

backlog.

39/67

During previous sprint reviews, the group members found it hard to calculate the workload

when deciding how many tasks a sprint backlog should contain. Calculating the workload

was hard primarily because the group experienced more time-consuming tasks than expected,

especially development-related tasks. Therefore, the group set the sprint duration to one week

to be more productive.

The group completed the homepage, created methods to get the current company, and access

management during the sprint. These tasks were almost finished in the previous sprint but

needed a little more time to be completed. The next challenge to overcome was the

functionality surrounding the creation of a new buy order, and the group believed it to be

challenging to finish before the sprint ended. During sprint review, the group agreed that a

one-week sprint was a little short, but the level of productivity was higher than usual and

stable for the entire sprint.

9.6 Sprint 5 (11.04 - 24.04)
The sprint started on Monday of the Easter week and was planned to be a two-week sprint, as

three weeks felt a little long and one week was a little short. The group agreed to continue

working Monday to Wednesday and then take a vacation for the remaining days of the easter.

The holiday was necessary for the group to ensure motivation and productivity moving

forward.

When starting the sprint, the group updated the risk matrix. The risk: "Implementation of

code does not work as intended and uses much time" was updated from a 16 to an 8. This risk

decreased because the group was more familiar with the development and the project, so it

spent less time finding information. The other reduced risk was "Fished systems do not work

correctly," which went from a 10 to a 4. The group has dealt with this problem earlier and

knows how to handle it if Fished's systems are not working.

Even though the focus was on the report, there was still an incentive to finish developing the

Fished marketplace and complete the development tasks. The marketplace shows all types of

relevant orders to the user's chosen company and gives the possibility to make new buy or

sell orders for the market.

Creating new order tasks required large amounts of time and resources. Therefore, the group

did a lot of manual testing to determine how much information was needed to successfully

40/67

create a new order using the API. The testing started with mock data until the developers

successfully made the order and the API was satisfied with the data.

During the sprint, the group's Pipelines encountered an error when building for Android. iOS

has not been an issue during the project and has been successfully built at every iteration.

There was an attempt to fix the problem, but as time became scarce, the group decided to

down-prioritize the issue as it was not of great value to the product. The group worked on

tasks related to the report. These focused on the technology used during the project, how the

group conducted testing, and documentation for every finished sprint iteration. In the sprint 5

review, there were still some unfinished tasks. The remaining tasks were mainly due to

inaccurate time estimations. Even though the time estimations were not entirely accurate, the

group felt more comfortable estimating time, and for every sprint, the time estimations were

more accurate.

9.7 Sprint 6 (25.04 - 08.05)
The sprint started with a change in weekly capacity, which was reduced from 30 hours a

week to 26 hours a week. Based on the previous sprints and tracked time, the group reflected

that the high capacity often resulted in little to no breathing room when tasks took longer than

expected. In addition, the group rarely managed to fill the set capacity, which reduced

motivation and the group members felt they worked hard every week but never reached the

set capacity.

In this sprint, the group successfully created orders by sending mock data to the API. Next,

the group shifted the focus to using user input to create a new order. As orders were created

using mock data, the group knew what data the API required and what was optional. The new

order object consists of 40 different values and multiple objects. The group supplied this

object with mock data and user input. The data from the user input consisted of fish type,

treatment, size, price, currency, and gear used to catch/raise the fish, and the mock data used

consisted of various static Strings and or null values. This shortcut was a conscious shortcut

taken by the group to finish the functionality, save time, and showcase to the product owner

how it would work. If there were more time to finish this functionality, the group would make

a proper solution for the shortcut taken.

The group conducted no user testing in the project for multiple reasons. Firstly, in the group's

opinion, the application never reached a state where it differed from the web application to a

41/67

level where user testing would bring value. Second, the product owner also stated that there

are no solutions for the user to reference and that user testing might create more noise than

value for the project. As the project was coming to an end, the group invited the product

owner to review the project and the product. The group and the product owner reflected upon

the project during the discussion. Of course, the group could have done some things better,

but overall the product owner appeared pleased with the process and the product.

9.8 Sprint 7 (09.5 - 15.05)
This sprint was the last sprint of the project, and at the start of the sprint, there was only one

week left. The focus shifted heavily towards the report, and the number of tasks related to

development was not many. The project's development phase did not reach the level that the

group was working towards, and this was due to many unforeseen issues early in the project

that drained many resources.

During this sprint, the group created a demonstration video of the product on a physical

smartphone. As mentioned, the focus was mainly on the report and in regards to the report,

the group created an excel sheet. This sheet contained all the chapters of the report and their

status. The reasoning behind using an excel sheet over Azure DevOps is that the group had

some bad experiences with using Azure DevOps to organize report-related tasks in this

fashion. The group had a meeting with the supervisor to review the report and discuss its

content. The meeting was deemed necessary, and the supervisor gave good feedback and

input, so the group knew what to prioritize before the deadline. The feedback was related to

the report's structure, flow and the importance of justifying and reflecting upon the choices

made throughout the project. As the delivery date is at the end of the sprint, completing all

the tasks related to the report is crucial. The development aspect of the project will continue

beyond the sprint and till the date of the exam.

10 Reflection
Reflection is an essential aspect of learning. It can help with further developing your skills

and increasing their effectiveness (The Open University, n.d.). During the course of this

project, reflection has been an important part. It has resulted in increased learning and has

been a helpful tool in optimizing different processes and increasing effectiveness.

42/67

10.1 Challenges
The start of this project had a steep learning curve, and it offered a wide variety of challenges.

It was a big challenge to develop good routines during the pre-sprint as there were many

uncertainties surrounding the project. Most of this time was dedicated to learning different

alternatives to choosing a programming language, a design pattern, and a framework. When

exploring these different technologies, there were many challenges related to installing and

learning as they were new to the majority of the group.

Time estimation was also a big challenge during the pre-sprint, as time was the only set factor

for the project. The usage of time-tracking tools was lackluster in the starting phase of the

project, which made it hard to keep track of the time spent on different tasks. The utilization

of Clockify helped the group track time in a structured manner, which made it more

accessible and practical to manage.

As the project had many uncertainties, planning early on was essential to give the project a

strong starting point. The earliest planning phase started with discussions surrounding the

functionality deemed necessary for the mobile application. The discussion progressed

forward as functionality upon functionality was added to the list. Azure DevOps boards were

utilized to make a structured list of the planned functionality, which became a problem as

there was too much functionality to implement compared to the time available. A lot of the

planned functionality was not proposed nor required by the product owner, and using this

type of approach resulted in hampering the project's progression.

After the early planning phase and choosing technologies, the next step was to explore the

development aspect of the project. The first major challenge regarding development was

implementing the third-party authorization platform delivered by Auth0. To access fished’s

pre-configured APIs required a key generated by Auth0, and configuring Auth0 to generate

the correct key was a more significant challenge than initially expected. The early

implementation of Auth0 did not issue the correct key, thus access to the APIs was not

granted. The implementation of Auth0 was an issue throughout Sprint 1, but it was

successfully implemented in Sprint 2. Through discussion with the product owner, some

tweaks to the code and some tweaks to the Fished APIs. Due to the severity of this issue and

its impact on the project, the group would have benefited heavily from just asking the product

owner at an earlier stage. This was reflected upon later in the project, and it required a lot of

43/67

unnecessary time and effort. After this challenge was solved, the general understanding of

how the product owner wanted the system to function was strengthened.

As the project progressed there were some problems with the planned lengths of the Sprints,

and the length of the planned tasks. On multiple occasions, planned tasks spanned more than

one sprint, which made branch merging and time estimation more complicated than they

needed to be. Following the discussion surrounding the length of the tasks and the Sprints,

the decision was made to test different Sprint lengths to find what suits the project best while

also trying to narrow the time required per task down to a workday or less.

During the duration of this project, the group has faced countless challenges of varying

difficulty. Solving these challenges has given the group an increased knowledge and

experience within the group. It has been a valuable lesson that can be used in future projects

where similar challenges might occur. Discussions, reflection, and close contact with the

product owner have been essential in solving a majority of issues faced in this project.

10.2 Previous Knowledge
Through the bachelor project, the group has utilized the knowledge acquired through the

various bachelor's degree courses. The overall impression is that the group has experienced

previous knowledge as very relevant to the project and highly transferable. Although the

knowledge from most of the subjects in the bachelor's degree has contributed to the project,

the group will especially highlight the courses within IS-310 project accomplishment, IS-202

programming project, IS-200 system analysis & system development, IS-104 interaction

design.

10.3 Learning Outcome
The bachelor project has led to great learning benefits and raised the competence within the

group. The group has raised their experience in project management, cooperation, personal

development, and technical skills throughout the project.

The members have developed their first mobile application, contributing to technical learning

outcomes as a new programming language, framework, and tools have been used during the

project. The main technical learning outcome has been to use Flutter, Dart, and MVVM to

develop an application. The group's security tool in the application is Auth0, and

44/67

implementing this into a mobile application has been a new experience for the group. This

has given the group valuable knowledge that may prove helpful after the study.

In order to work efficiently and carry out the project in a good way, a good collaboration has

been crucial. To be available above each other and ensure a good communication flow, the

group created a discord channel intended for group members and a Microsoft Teams

room/chat to keep in touch with the product owner. These channels have been shown to

increase efficiency in both work and communication. There was a low threshold to ask for

help and share experiences through these channels, which improved the project throughout.

This has benefited from the good collaboration and maintaining active communication within

the group and company.

All group members have worked together on earlier projects and therefore knew some of

each other's strengths and weaknesses. To maximize the learning outcome, each group

member has been given the opportunity to participate in both technical and report-based

tasks. The ability to continuously update each other on what has been done, how it was done,

and why it was done has been essential to share knowledge and raise the learning outcome

within the group.

10.4 Changes
Even though the project was deemed a success by everyone in the group, there was still some

room for improvement. This chapter will go through a deliberation about how the project

would have been better with TDD, Testing and version control management.

10.4.1 TDD & Testing
Test-driven development is a form of development that ensures that all production code is

written in response to a test case (Martin, n.d.). In hindsight, developing using a TDD

mindset would help a lot with problems the group faced during the development. These

problems range from accessible development to production halt due to third-party systems

not working as intended. The examples below show use cases where and how the group

would have benefited from TDD.

45/67

Auth0 Accessibility, this one was a major gripe in the production due to always having
to write both username and password every time a cold reboot or error was
triggered. With TDD, it would allow the group to modularize the authentication
and authorization by setting up pre-existing values (mocking the data). Thus, skip
the login with every hotfix or error that would occur. In addition, it would also
give the group a secure flow of production due to not being highly dependent on
Auth0 systems for developing the rest of the application.

Fished As mentioned in the Auth0 example, this would also benefit a secure production
flow. Unfortunately, the mobile application development was co-dependant that
the Fished system was up and running, making it high risk.

An example of this is authentication APIs not working as intended. The group
used a lot of hours trying to figure out the problem without any luck. On the
bright side, it only happened once during the project but would have high
ramifications in the real-world scenario.

API The group would benefit from testing the response from the APIs at the start of
the project instead of blindly following the documentation. Using a program such
as Postman would save the group a lot of hours spent debugging code and
refactoring models.

Figure 10 - TDD Benefit table

Another thing the group could have applied while writing tests is using the vital testing

principles described in the book “The Art of Software Testing”. In conjunction with the

product owner’s rule about not testing data objects, these principles would have given a

clearer picture of unit testing. To further add to this point, the author mentions that these

principles are often overlooked even though they are apparent (Myers et al., 2011, p. 12-13).

10.4.2 Version Control Management
The group had a meeting with the product owner to go over the basics of version control and

testing early stages of the project. During that meeting, the product owner showed a new

method of approaching version control instead of the standard merging method learned at the

university. The new approach was rebasing and squashing commits to make the commit tree

straight and more organized. The group favored this new method because it was

recommended by the product owner and made it possible to use the commit tree as part of the

documentation.

After experimenting with the new method, it was discovered to be more destructive than

anticipated because it let the developers rewrite and delete their commit messages. To

circumvent that happening, the group decided to go for a safer and more familiar VCM

46/67

option that resembles a modified version of Gitflow. The group's modified version uses a

main, dev, and feature branch to ensure that code can be recovered after a mistake. In

addition, the branches had documented rules for each of the branching stages, such as; master

would contain a working version of the sprint production, dev would have been the primary

target for rebasing, and feature would work as a development branch.

Gitflow worked flawlessly in the early stages of development during the uncertainty, because

it gave the security for the group to experiment. Most of the mistakes could be reversed and

would not contribute to a mental overhang on group members due to lack of experience.

However, the version control management had its flaws, and it was apparent that it required

extra bureaucracy even when the project only had two active developers. Thus, the reason for

this chapter discussing Trunk-based development. Trunk-based development is a set of

practices for version control management where developers focus on small merges and

frequent updates to the core branch. It streamlines merging and integration phases, helps

achieve CI/CD and increases the rapid software delivery. These factors could help the group

increase organizational performance if done right (Zettler, n.d.).

47/67

11 Group Evaluation
The group is pleased with the communication throughout this project. There were a lot of

new technologies, and all group members took the challenge with a smile. The members have

worked together before and know each other well. This gave plenty of room for discussion

and questions. The group was familiar with its dynamics, and it became better at building on

each other's strengths and weaknesses throughout the course of the last year.

Creating a mobile application was new for all group members. Moreover, the group did not

know what the project should look like, so there were challenges. The biggest of which was

to estimate the time for tasks and the project as a whole. Especially in the start when

knowledge was lacking and the scope of the project and tasks was uncertain. However, this

project was a good experience, and the group gained lots of new knowledge, and members

got to develop their individual skills.

Because of the lack of knowledge and experience with creating a mobile application, it was

reasoned that continuously making short-term plans and iterating on a product was the best

idea to reach the project goals. Scrum was instrumental in this endeavor; it made it easy to

keep the progression up, and to create events which fostered and reinforced communication.

The sprint reviews were particularly valuable because they created a great opportunity to

present the current progress and get feedback and guidance from both the product owner and

the group’s mentor.

11.1 Individual Evaluation

Ole Marius Andersen

During this project, my primary work area has been in development, but I have worked with a

wide variety of tasks ranging from programming and modeling, to assisting in report writing

and editing. This has provided me with a wide variety of learning outcomes and challenged

the skills I have built during my study.

I have gained relevant knowledge regarding development on a general level and utilizing

Azure DevOps and other tools for project management and implementation. Working with a

group of like-minded people over a more extended period has provided me with valuable

knowledge that will be relevant to take with me in my work life. The project has also shown

48/67

the importance of a good working environment and how important it is to have

knowledgeable people around you.

Markus Brødsjø

Under this project I primary have the responsibility for the technical parts.In this project, I

operated a role as Scrum Master, and the role included supporting the other group members. I

have taken the lead in the daily scrum and essential meetings within the group and with the

product owner and supervisor to increase the progression through the project.

The technical part contains the implementation and planning of the architecture and code.

Since none of the group members do have experience with a mobile application, the learning

curve was steep. The framework Flutter was a little confusing at the start, but after a month of

coding, it was easier to understand the framework and how it works. One requirement for the

product owner was to use Auth0 for authentication to use the Fished API`s. I got a good

overview of how third-party authentication works and will take the experience further in my

career.

Ole Bjørnar Granås

Throughout the project I contributed to a high degree with analyzing and editing documents

relevant to the bachelor’s project. When group members asked for feedback and advice on

report related stuff, I was one of the primary sources. I also relieved the group by taking the

primary responsibility for the concurrent subject, so they could put additional effort into the

bachelor’s subject. Lastly, I have participated in parts of the coding and done some code

reviewing. I have made many valuable experiences when it comes to project management and

development. When it comes to report writing I’ve improved my skills significantly, and I’ve

also become better at balancing critique with praise when giving feedback,

Niklas A Gustavsen

During the bachelor project, I have been working with a wide variety of tasks. In terms of

developing, my main tasks at the beginning of the project were front-end development in the

framework Flutter. This task gave me an understanding of a new programming language and

framework. My competence was also raised through some pair programming and working

agile through a DevOps environment. Further, documenting the process and writing report

content has been my main responsibility throughout the project. Tasks that have been

included in this work are the creation of mockups for design as well as making explanatory

models to include in the project report.

49/67

During the project, I have contributed with my strengths and developed my weaknesses for

the better. I have both learned from my group members and taught knowledge in the areas

where I have been able to contribute. If I am going to highlight something I especially want

to bring with me further from the bachelor project it is the project collaboration and the

project execution of an mobile application. I am convinced that this experience will benefit

me in later projects and that it will contribute to surpassing challenges that may arise.

Michael Herland Valen

At the beginning of the project, I contributed to the initial planning and framework while also

experimenting with different roles. As the project matured, I took more of a quality assurance

and DevOps developer role in conjunction with writing the report and creating models. That

role suited me better because it enabled me to work on tasks I would like to work on during

my career.

I have garnered valuable experience in projects by working on my strengths and weaknesses.

I am proud of the product and process that we achieved while also glad to witness the growth

of my peers as our development process matured.

50/67

References

Ambler, S. (2013, April 19). Use Case Diagramming Guidelines. Agile Modeling. Retrieved

May 15, 2022, from http://agilemodeling.com/style/useCaseDiagram.htm

Ambler, S. W. (2004). The object primer. Cambridge University Press.

Apple. (n.d.). FINN.no on the App Store. App Store. Retrieved May 16, 2022, from

https://apps.apple.com/no/app/finn-no/id526541908

Atlassian Bitbucket. (n.d.). What is version control. Atlassian. Retrieved May 15, 2022, from

https://www.atlassian.com/git/tutorials/what-is-version-control

Auth0. (n.d.). Auth0 Overview. Auth0. Retrieved May 15, 2022, from

https://auth0.com/docs/get-started/auth0-overview

Aven, T. (2015). Risk Analysis. Wiley.

Azure. (n.d.). Hva er DevOps? DevOps forklart. Microsoft Azure. Retrieved May 15, 2022,

from https://azure.microsoft.com/nb-no/overview/what-is-devops/#devops-overview

Azure DevOps. (2022, February 9). Microsoft Docs. Retrieved May 14, 2022, from

https://docs.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops?view

=azure-devops

Azure DevOps. (2022, May 9). Azure Artifacts overview - Azure Artifacts. Microsoft Docs.

Retrieved May 15, 2022, from

https://docs.microsoft.com/en-us/azure/devops/artifacts/start-using-azure-artifacts?vie

w=azure-devops

Azure DevOps Boards. (2022, March 7). Microsoft Docs. Retrieved May 14, 2022, from

https://docs.microsoft.com/en-us/azure/devops/boards/get-started/what-is-azure-board

s?view=azure-devops

51/67

Azure DevOps Pipelines. (2022, April 1). Microsoft Docs. Retrieved May 14, 2022, from

https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pip

elines?view=azure-devops

Azure DevOps Repos. (2022, February 10). Microsoft Docs. Retrieved May 14, 2022, from

https://docs.microsoft.com/en-us/azure/devops/repos/get-started/what-is-repos?view=

azure-devops

Azure DevOps Wiki. (2022, May 6). Microsoft Docs. Retrieved May 14, 2022, from

https://docs.microsoft.com/en-us/azure/devops/project/wiki/wiki-create-repo?view=az

ure-devops&tabs=browser

Benyon, D. (2019). Designing User Experience: A Guide to HCI, UX and Interaction Design.

Pearson Education Limited.

Code standards. (n.d.). University of St Andrews. Retrieved May 15, 2022, from

https://www.st-andrews.ac.uk/digital-standards/code-standards/

Eco Trawl. (n.d.). Eco Trawl. Retrieved May 13, 2022, from https://ecotrawl.no/

Evans, Z. (2020, November 6). Why Should You Use ClickUp? ClickUp. Retrieved May 14,

2022, from https://clickup.com/blog/why-clickup/

Features. (n.d.). Clockify. Retrieved May 14, 2022, from https://clockify.me/feature-list

Fished. (n.d.). Fished. Retrieved May 13, 2022, from https://fished.com/

Flutter. (n.d.). FAQ | Flutter. Flutter documentation. Retrieved May 15, 2022, from

https://docs.flutter.dev/resources/faq

Gillis, A. S. (2019, 07). What is Quality Assurance? TechTarget. Retrieved May 15, 2022,

from https://www.techtarget.com/searchsoftwarequality/definition/quality-assurance

Google. (n.d.). FINN.no – Apper på Google Play. Google Play. Retrieved May 16, 2022,

from https://play.google.com/store/apps/details?id=no.finn.android&hl=no&gl=US

52/67

Google. (n.d.). Google Trends. Google Trends. Retrieved May 16, 2022, from

https://trends.google.com

Google Drive. (n.d.). Google. Retrieved May 14, 2022, from https://www.google.com/drive/

IBM. (n.d.). What is Software Testing and How Does it Work? IBM. Retrieved May 15, 2022,

from https://www.ibm.com/topics/software-testing

Indeed Editorial Team. (2021, September 27). 8 Types of Estimation Techniques for Projects.

Indeed. Retrieved May 14, 2022, from

https://www.indeed.com/career-advice/career-development/types-of-estimation

Intoto. (n.d.). Vann som vær - Intoto. Retrieved May 13, 2022, from https://intoto.io/

Joubert, S. (2020, March 31). The Critical Role of Communication in Project Management.

Northeastern University. Retrieved May 15, 2022, from

https://www.northeastern.edu/graduate/blog/communication-in-project-management/

KnowIt. (n.d.). UX og UI-design. Knowit. Retrieved May 16, 2022, from

https://www.knowit.no/tjenester/experience/design-og-merkevare/ux/

Lucidchart. (n.d.). Why Is Project Management Important? Lucidchart. Retrieved May 16,

2022, from https://www.lucidchart.com/blog/why-is-project-management-important

Madan, S. (2019, December 16). DONE Understanding Of The Definition Of "Done”.

Scrum.org. Retrieved May 15, 2022, from

https://www.scrum.org/resources/blog/done-understanding-definition-done

Martin, R. C. (n.d.). The Three Rules Of TDD. ButUncleBob. Retrieved May 15, 2022, from

http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

Mathiassen, L., Munk-Madsen, A., Nielsen, P. A., & Stage, J. (2018). Object-oriented

Analysis & Design. Metodica.

Microsoft. (2021, July 8). The Model-View-ViewModel Pattern - Xamarin. Microsoft Docs.

Retrieved May 16, 2022, from

53/67

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patter

ns/mvvm

Myers, G. J., Badgett, T., & Sandler, C. (2011). The Art of Software Testing. Wiley.

Nielsen, J. (1993). Usability Engineering (1st Edition ed.). Morgan Kaufmann.

The Open University. (n.d.). Self reflection. The Open University. Retrieved May 16, 2022,

from https://www.open.ac.uk/choose/unison/develop/my-skills/self-reflection

O'Reilly. (n.d.). Pros and Cons about MVVM. O'Reilly. Retrieved May 16, 2022, from

https://www.oreilly.com/library/view/learning-javascript-design/9781449334840/ch10

s07.html

Oxidane Venture. (n.d.). Oxidane Venture. Retrieved May 13, 2022, from

https://no.oxidane.vc/

Proff. (n.d.). Proff.no. https://www.proff.no/aksjon%C3%A6rer/-/fished-as/924507748

Radigan, D. (n.d.). Agile vs. waterfall project management. Atlassian. Retrieved May 14,

2022, from

https://www.atlassian.com/agile/project-management/project-management-intro

Ramel, D. (2021, July 27). Microsoft Replaces Xamarin Toolkits with New .NET MAUI

Alternatives. Visual Studio Magazine. Retrieved May 16, 2022, from

https://visualstudiomagazine.com/articles/2021/07/27/net-maui-kits.aspx

Rehkopf, M. (n.d.). Kanban vs Scrum. Atlassian. Retrieved May 14, 2022, from

https://www.atlassian.com/agile/kanban/kanban-vs-scrum

Reid, R. D., & Sanders, N. R. (2012). Operations Management. Wiley.

Ridland, M. (2021, 05 12). The Evolution of Xamarin.Forms. XAM Consulting. Retrieved

May 16, 2022, from https://xam.com.au/the-evolution-of-xamarin/

Schwaber, K., & Sutherland, J. (2020, 11). The Scrum Guide. The Scrum Guide. Retrieved

May 14, 2022, from

54/67

https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf#zoom=1

00

Sommerville, I. (2011). Software Engineering. Pearson.

Use Cases. (2013, 10 09). Usability.gov. Retrieved May 15, 2022, from

https://www.usability.gov/how-to-and-tools/methods/use-cases.html

Wrike. (n.d.). What is Time Management in Project Management? Wrike. Retrieved May 14,

2022, from

https://www.wrike.com/project-management-guide/faq/what-is-time-management-in-

project-management/

Zettler, K. (n.d.). Trunk-based Development. Atlassian. Retrieved May 15, 2022, from

https://www.atlassian.com/continuous-delivery/continuous-integration/trunk-based-de

velopment

55/67

Appendix

Appendix 1: Statement from Oxidane Venture

56/67

57/67

58/67

Appendix 2: Map of the Requirements

59/67

Appendix 3: Use Cases

60/67

61/67

Appendix 4: Definition of Done

62/67

63/67

Appendix 5: Best practice Flutter & Dart

64/67

65/67

66/67

Appendix 6: Git Cheatsheet

67/67

