
Group Name: /*TODO*/

Surname First Name

Haraldseth Ole

Meltveit Fredrik

Mossestad Daniel

Larsen Aleksander

Course code IS-304

Course name Bachelor Thesis in Information Systems

Course responsible Hallgeir Nilsen

Supervisor Janis Gailis

Deadline May 14th, 2021

Number of words (whole document) 16581

Project/product title Wizards - a Simplified Case
Management Application

We confirm that we do not cite or otherwise use other
people’s work without this being stated and that all
references are listed.

Yes
X

No

Can the report be used for teaching purposes? Yes
X

No

We confirm that everyone in the group has contributed to
the report

Yes
X

No

Report IS-304

Wizards - a Simplified Case
Management Application

University of Agder
Institute of Information Technology

Group 5, /*TODO*/

Preface
This report will present, discuss, and reflect on the group project in course IS-304
Bachelor Thesis in Information Systems. The course is the final project for the team's
bachelor’s degree.

Special thanks to Fredrik Werpen (product owner), Marius Holen, and Merethe
Sjøberg for their support and commitment to this project. Many thanks to the team
at Sikri for allowing us to do the project with them and for superior guidance
throughout the project.

Thanks to Janis Gailis for honest and direct feedback and input on the final report.

Kristiansand, University of Agder, Spring of 2021

The members of the team and the authors of this report are:

Ole Haraldseth: ole.haraldseth@gmail.com
Aleksander Larsen: aleksanderbl60@gmail.com
Fredrik Meltveit: melt.fred@gmail.com
Daniel Mossestad: daniel-mossestad@hotmail.com

mailto:ole.haraldseth@gmail.com
mailto:aleksanderbl60@gmail.com
mailto:melt.fred@gmail.com
mailto:daniel-mossestad@hotmail.com

Abstract
The project was offered by Sikri on the basis of an earlier research report. This
report had documented some of the already known problems with their main
application Elements and how they could be solved. Elements is a case
management program used to handle case management in the public sector.

In the report, we learned that many of the users of Elements are uncomfortable with
the design weaknesses in Elements. There are too many features for infrequent
users, and they struggle to manage basic case management. This had resulted in the
need for a lot of guidance and frequent training for these users. From the report it
was concluded that Sikri needed a lightweight alternative with a simple and modern
UI for these users. This lightweight alternative should be based on a step-by-step
process, a wizard, to guide the users through a case. This would mitigate the need to
spend extra time on training and support by administrators.

The bachelor group was tasked with creating this new lightweight application. The
aim of the project was to create the basic design and functionality for the
application, called Wizards.

The project was managed using the Scrum framework in combination with Software
Development Life Cycle for development of the application. The project consisted of
nine sprints divided into a two week cyclus.

The most central technologies used to construct the Wizards application was React
with TypeScript for the Frontend, Redux for state management, Material UI and
Material Design for the design of the application, and the Backend is managed with
the help of OData API for connection with the NCore server.

The result of the bachelor project was a finished application with connection to the
same Backend as Elements, with the basic functionality needed to process a case in
the application. The application was also deployed at the end of the project and
available for everyone involved to test and use. Sikri will continue to develop the
Wizards application and is aiming to offer the application to its customers in the fall.

Table of Contents
Preface 3

Abstract 4

1 - Introduction 9
1.1 Definitions 9

2 - Product 10
2.1 Product Description 10

2.2 Product Demo 11

3 - Project Decisions 12
3.1 Project Management 12

3.1.1 Project Framework - Scrum 12

3.1.1.1 Agile Software Development 13

3.1.2 Project Management Tools & Version Control 13

3.1.2.1 Azure DevOps 13

3.1.2.2 Version Control - Git 14

3.1.3 System Development life Cycle (SDLC) 14

3.2 Technology Stack 14

3.2.1 JavaScript, TypeScript & React 15

3.2.2 Redux 15

3.2.3 Material UI 16

3.2.3.1 Material Design 17

3.2.4 OData and API Connection 17

3.2.5 Code Standard and Folder Structures 17

3.2.5.1 Project Folder Structure 18

3.2.5.2 Code Folder Structure 18

3.3 Time Management 19

3.4 Work Location 19

4 - Sprints 20
4.1 Pre-sprint 20

4.2 Sprint 1-3 - Wizard A 21

4.2.1 Sprint 1 21

4.2.2 Sprint 2 21

4.2.3 Sprint 3 22

4.3 Sprint 4-6 - Wizard B 22

4.3.1 Sprint 4 22

4.3.2 Sprint 5 23

4.3.3 Sprint 6 23

4.4 Sprint 7-9 - Wizard C 24

4.4.1 Sprint 7 24

4.4.2 Sprint 8 24

4.4.3 Sprint 9 25

5 - Project Execution 25
5.1 Analysis 25

5.1.1 Product scope 25

5.1.2 Specification 25

5.1.3 User Stories 26

5.2 Design 26

5.2.1 Sketches and prototypes. 26

5.3 Technical Analysis 27

5.3.1 System architecture 27

Wizard A 27

Wizards B 28

Wizards C 28

5.4 Risk Analysis 29

5.4.1 Risk Register 29

5.4.2 Issue Log 30

5.5 Implementation/Development 30

5.5.1 Work Routines 30

5.5.1.1 Sprint planning 30

5.5.1.2 Implementation 31

5.5.1.3 Sprint Conclusion 31

5.5.2 Work Distribution 31

6 - Quality and Testing 32
6.1 Quality Assurance 32

6.1.2 Acceptance Criteria 33

6.1.3 Code Standard and Guides 33

6.1.4 Pair Programming 33

6.1.5 TypeScript 33

6.1.6 Comments and Descriptions 34

6.1.7 Refactor 34

6.2 Testing 35

6.2.1 Unit Testing 35

6.2.2 User Test and Demos 35

7 - Reflection 36
7.1 Changes and Challenges 36

7.1.1 Product and MVP Definition 36

7.1.2 Code 36

7.1.2.1 Incoming Application 37

7.1.2.2 The "Wizard." 37

7.1.2.3 General 38

7.1.3 Resources 38

7.1.3.2 Technical Resources 39

7.1.4 Risk Management 39

7.1.5 Keeping the Project Agile 40

7.2 Learning Outcomes 40

7.2.1 Professional Evening 40

7.2.2 Project Management 41

7.2.3 Technical Skills 41

7.2.4 Cooperation Skills 42

7.2.4.1 Planning 42

7.2.4.2 Meetings 43

7.2.4.3 Delegate Work 43

7.2.4.4 External Guidance 43

7.2.5 Self Evaluation 44

7.3 Statement from Client 47

8 - Conclusion 48

References 49

Appendix 53

Appendix 1 - Product Backlog Azure DevOps 53

Appendix 2 - Sprint Backlog Azure DevOps 56

Appendix 3 - Taskboard Azure DevOps 57

Appendix 4 - Git Guide 58

Appendix 5 - Code Standard 59

Appendix 6 - Work Time Registration 60

Appendix 7 - Group Contract 61

Appendix 8 - Gantt Chart 62

Appendix 9 - Example of User Story 64

Appendix 10 - Figma Dashboard with Sketches 65

Appendix 11 - Figma Prototype 66

Appendix 12 - Wizard A 67

Appendix 13 - Wizard B 68

Appendix 14 - Wizard C 69

Appendix 15 - Risk Register 70

Appendix 16 - Recorded Risks 73

Appendix 17 - Planning Poker 74

Appendix 18 - Folder Structure 75

Appendix 19 - React Components Guide 76

Appendix 20 - Redux Guide 77

Appendix 21 - Branch Guide 78

Appendix 22 - Sprint Guide 79

Appendix 23 - Example of Unit Test 80

Appendix 24 - Overall Plan 81

Appendix 25 - Steering Committee Meeting 1 82

Appendix 26 - Steering Committee Meeting 2 84

Appendix 27 - Steering Committee Meeting 3 86

1 - Introduction
The group /*TODO*/ has, during the spring semester 2021, from January to mid-May,
written their bachelor project for Sikri AS. The group consists of four members.

Sikri was formed in January 2020, after it was separated from the IT company EVRY.
The company has more than 100 employees. Elements is a case management
system developed, used, and sold by Sikri. It is primarily used in the public sector in
Norway.

The team was given the task of designing and developing a web application with the
goal of simplifying Elements. The application will first and foremost be targeted
against infrequent users who do not work with case management on a daily basis.

The project is managed through the use of the Scrum framework, and we have
chosen to use an agile methodology to be ready for unforeseen events. A document
with an analysis of the weaknesses of Elements was given to us at the start of the
project and worked as guidance for how the Wizards application would end up.
Since the analysis was already done by Sikri, our project was focusing on design,
Frontend development, and connection to the Backend core of Elements.

The objective of this report is to document the process of developing the Wizards
application and all the different steps made to ensure an end product of high
quality. It also covers the experiences and learning outcomes gained by the group
throughout the project.

1.1 Definitions

Elements: The case processing and archiving solution built by Sikri.
https://www.sikri.no/elements-sak-arkiv

NCore: The connection point to Elements, the NCore server is a backend
environment made with the .NET Core framework, which is typically written in C#.

Workflow: An hierarchical collection of tasks defined in Elements.

https://www.sikri.no/elements-sak-arkiv

Wizard: The specific user interface for workflow-based case processing (Tech
Terms, n.d.) (As opposed to Wizards, the project).

Wizards A, Wizards B, Wizards C: The state of the application at the end of sprints
1-3, 4-6, and 7-9, respectively.

2 - Product
The product is a web application for simplified case processing. Sikri develops and
delivers a product with many excellent and advanced functions that can be used for
most case handling tasks that are in demand in today's market. The product is called
Elements, and through a customer survey, Sikri has found that a lot of their users do
not use Elements on a daily basis. This results in the users being in need of help and
guidance when they use the system, which increases the workload of superusers
because they have to take time out of their day to support these types of users.
Through the survey, Sikri found that there is a need for a more simple way to handle
these kinds of users. This need creates the basis for our bachelor project, which is
to create a product with a simple user interface that makes case processing easy,
seamless, and intuitive. The idea behind the simplified application was to create a
wizard for case management: a step-by-step interface to guide less experienced or
advanced users through case processing. This led to the working project name
"Wizards."

This chapter will go into depth on what the Wizards product is and what its current
state is.

2.1 Product Description

The Wizards web application is a supplement to Elements, connected to the same
backend. Wizards is intended as a simplified alternative for case processing of cases
that have a defined workflow. Workflows are definable in Elements and can be
connected onto an individual case or a case type in order to provide a set of tasks
for the completion of case processing.

All cases belonging to a caseworker can be displayed in the Wizards application.
However, the Wizards only allows case processing through a wizard, and the wizard

interface is built from defined workflows, so cases that are not reducible to a
workflow can not be processed. Because of this, the wizard does not have to display
functions, features, and buttons that are not relevant to the task at hand.

The web application is divided into two primary sites: a "cases page" page for
browsing cases and a "wizard page" for processing a selected case. The pages can
be accessed after a caseworker logs in using their Elements account.

The cases page renders a list of all cases connected to the logged-in user in
Elements. A search bar allows the user to filter cases based on search queries. The
list is sortable based on all relevant case fields, and the number of cases viewed at
once can be modified between 5-20. Once a case is selected from the list by the
user, the application renders a view for case details to the right of the list. The
application automatically resizes components to fit the number of components
displayed at once. In the case details view, the user can select the different journal
entries of the case for further inspection. After selecting a journal entry, the user can
view the entry details, preview linked documents, and see the tasks required to
process the case.

The wizard page allows the user to begin processing work for the selected case. The
page replaces the case list and search bar with a Wizard interface while keeping the
details view of the selected case. The details view allows the user access to all
relevant case details and documents while working through the tasks for the wizard.

2.2 Product Demo

This link redirects to a video of how Elements and Wizards works and looks:
https://drive.google.com/drive/folders/1RgZGtG8OlWFl4luWOtMgAW-vTEI6L32b?usp
=sharing
This link redirects to an early clickable version of the Wizards (version A) application
from sprint 3:
http://wizards-env.eba-z9wcmrpk.us-east-2.elasticbeanstalk.com/Dashboard

https://drive.google.com/drive/folders/1RgZGtG8OlWFl4luWOtMgAW-vTEI6L32b?usp=sharing
https://drive.google.com/drive/folders/1RgZGtG8OlWFl4luWOtMgAW-vTEI6L32b?usp=sharing
http://wizards-env.eba-z9wcmrpk.us-east-2.elasticbeanstalk.com/Dashboard

3 - Project Decisions
In software development projects, "managers are saddled with the responsibility of
leading their organizations to achieve objectives and stated goals" (Abubakar et al.,
2019). This applies both in terms of how the team works internally and also in terms
of the external collaboration with another party. Further in this chapter, we will
describe and discuss central decisions throughout the project.

3.1 Project Management

In order for a project to take place in a smooth manner, it is important to make a
decision on what the workflow will look like. In the initial phase of the project, there
were many discussions regarding the choice of tools and working methods.

3.1.1 Project Framework - Scrum

We chose Scrum as our project framework because; it was the project framework
we had the most experience with, and it was recommended by Sikri. The
stakeholders in Sikri use this type of framework in their own software development
projects and would therefore be able to offer better assistance.

The Scrum Team consists of the Product Owner, Scrum Master, and the
development team. The Product Owner has the main responsibility for how the
product will be at the end of the project. It is the Product Owner's responsibility to
make the central decisions, while the Scrum Master must ensure that the demands
made by the Product Owner are fulfilled. There is a lot of organization in the work
tasks of the Scrum Master. Sprint Planning meetings, Sprint Retrospective meetings,
and Sprint Review meetings must be organized and led. It will also be the role of the
Scrum Master to lead stand-up meetings at the beginning of each working day. "The
Product Backlog is an emergent, ordered list of what is needed to improve the
product." This list is the only source of work to be done by the Scrum Team. The
Sprint Backlog consists of a list of Sprint Backlog items. These items each contain a
Sprint Goal, a Product Backlog item, and an actionable plan for delivering the
Increment. (Scrum.org, n.d.).

The roles of the Scrum was delegated in the following way:
● Product Owner - Fredrik Werpen
● Scrum Master - Ole Haraldseth
● Development Team - Ole Haraldseth, Aleksander Larsen, Fredrik Meltveit and

Daniel Mossestad

3.1.1.1 Agile Software Development

To be agile was important throughout the project and was adopted early. According
to The Manifesto for Agile Software Development, there are twelve important agile
principles in software development, some of these are: deliver working software
frequently, welcome changes in requirements, frequent face to face conversations
with customers and end-users, reflecting on how to improve and become more
efficient (Beck et al., 2001).

It was decided to keep the sprints short and to have frequent contact with
stakeholders. This was decided so the stakeholders could affect and influence the
work as much as possible as well as come with inputs on potential changes to the
scope. This way, potential misunderstandings or complications could be solved
early.

3.1.2 Project Management Tools & Version Control

To ensure a successful project, it is important to keep track of all the tasks to be
done, but also to keep track of what each individual should do. This chapter will
describe which tools we chose to use, as well as a short brief about why we chose
to use them.

3.1.2.1 Azure DevOps

The product management software we chose to use was Azure DevOps. Sikri uses it
in its daily operations, and it was highly recommended by them.

The program was a great tool to help organize the Scrum and keep track of the
Product Backlog (appendix 1), Sprint Backlog (appendix 2), and tasks (appendix 3).
The tasks were organized in sprints and could be carried over to the next sprint if
not all the planned tasks were completed. This means that you can keep a good
overview of the tasks, and you can also link the various tasks to the person who

should do a given task. Another great advantage of DevOps is that you can write a
time estimate on the various tasks.

3.1.2.2 Version Control - Git

After some discussion and advice from Sikri, the group decided to use Git (Git, n.d.)
for version control. Git is something the group members have worked with before,
and it is most likely the most widely used version control tool in software
development (RhodeCode, n.d.). In addition, Azure DevOps has a close integration
with Git. These factors combined made us agree that Git was the ideal tool for our
project.

The way we used Git was that we defined user stories before we divided them into
several smaller tasks. The various tasks should be short, preferably no longer than
what can be completed in a day. Short tasks and proper use of Git will lead to high
quality and easy to revert changes.

To assure high quality and proper use of Git, a document (appendix 4) was created
for how Git should be used so that it was done correctly by all members. A positive
consequence of using strict rules when working with Git is that there will be a
standard for the programmers from Sikri when working with the code in the future.

3.1.3 System Development life Cycle (SDLC)

SDLC is a process that can be used when developing software and information
systems. We decided to use this process along with Scrum to develop the product.
This means that the development would happen in stages consisting of planning,
analysis, design, testing, and implementation. These stages will be described further
in chapter 5 and 6 (Wikipedia contributors, 2021a).

3.2 Technology Stack

This chapter will describe the technology stack we have used to create the product
and some information about the choices we have made.

Technology Stack used:
● JavaScript, with TypeScript superset, as the programming language

● React as Frontend framework
● Redux for global state management
● Material UI for styling and design components
● OData for API connection to the core server

3.2.1 JavaScript, TypeScript & React

As Sikri has recently converted their entire software into React with TypeScript, it
was a requirement from Sikri that this was also used in the new software so that it
could easily be maintained by Sikri after the project is completed.

React is an open-source, Frontend JavaScript library for building user interfaces or
user interface components. React can be used as a base in the development of
single-page applications. It is maintained by Facebook and a community of
individual developers and companies. Additional libraries for state management and
routing are usually used together with React. Redux and React Router are examples
of such libraries (Wikipedia contributors, 2021b).

TypeScript is an open-source language that builds on JavaScript. It adds static type
definitions. Types provide a way to describe the shape of an object, providing better
documentation, and allowing TypeScript to validate that your code is working
properly (TypeScript, n.d.).

3.2.2 Redux

Redux is an open-source JavaScript library for managing application states. It is
commonly used with libraries like React for building user interfaces (Wikipedia
contributors, 2021c). It is a predictable state container for JavaScript applications.
Redux helps with writing applications that behave consistently and run in different
environments (client, server, and native). It works with any UI layer and has a large
ecosystem of add-ons (Redux, n.d.).

The decision to use Redux was based on a desire to update and access the state
from anywhere in the application. Keeping a global state for features such as
multiple cases, a selected case, search queries, and selected registry entries. This
allows a user to navigate anywhere in the application while maintaining a consistent
state. Redux was chosen above other state management frameworks because (1)

Redux is the most developed framework, (2) Redux provides rigorous standards and
documentation, and (3) Redux has a large number of optional resources and
packages. As the project would at some point be connected to the Elements
backend, the state would have to be updated based on API calls. In other
frameworks, and in plain Redux, you can generally only call synchronous updates to
the state. The thunk middleware package allowed for readily made standards and
functions in regards to asynchronous updating of the state, which is often necessary
functionality when making API calls.

Later in the project, the Redux Toolkit was added.

One drawback of Redux is that, if following Redux' TypeScript guidelines, the written
code adds up to a lot of boilerplate while introducing coupling issues; a small
change might require changes in up to four different files and functions. As this
could build up to an annoyance, or a general issue in the Wizards project, we chose
to add the Redux toolkit.

Redux Toolkit is a toolset that helps shorten Redux-related code and reduces code
length and coupling issues. In addition to providing good defaults for store setup,
Redux Toolkit includes the most commonly used Redux addons built-in (Abramov &
Redux documentation authors, n.d.-a).

3.2.3 Material UI

For the design of the different components, the team decided to use Material UI.
Material UI provides pre-made React components that can be used for faster and
easier web development. Material UI is one of the most popular UI frameworks and is
based on the "material design" standard developed by Google (Material-UI, n.d.). It
provides more ready-made components than most other libraries, and some
members of the group had used the framework in earlier projects. The Material UI
components can easily be customized to fit a certain specific need for a specific
scenario. This meant that it could easily be customized to fit the wizard and the
design language the team was going for. That also meant that time was saved by not
having to design components from scratch and helped the project progress faster.

3.2.3.1 Material Design

Material design is a design language developed by Google in 2014. Some of the main
principles in material design are the use of grid-based layouts, responsive
animations, padding, depth effects as lighting and shadows (Wikipedia contributors,
2021d).

Google describes Material Design as:
"Material is an adaptable system of guidelines, components, and tools that support
the best practices of user interface design. Backed by open-source code, Material
streamlines collaboration between designers and developers and helps teams
quickly build beautiful products (Material Design, n.d.).

Material design is used by several of the biggest companies and social platforms in
the world, such as Google and their entire ecosystem, as well as NASA, Netflix,
Spotify, and Amazon. (Material-UI, n.d.-b)
The group chose to follow Google's material standards, as it would give users a
familiar design as well as a modern, sleek and intuitive feel. Another important factor
was that the whole team had previous experience with this library and had used it in
an earlier project.

3.2.4 OData and API Connection

The OData protocol was used for communication between the NCore servers and
the Wizards application. This was given to us by a resource from Sikri to help us with
API connections. OData protocol is a standard way to use RESTful APIs in a simple
and standard way (OData, n.d.). For connection purposes, we were provided with
some custom-made services and schema files to easily integrate the Wizard
application with the Elements ecosystem.

3.2.5 Code Standard and Folder Structures

It was decided early on that we wanted to have a standard on how code should be
written and how the documents should be organized. Previous experiences from
projects have given an increased focus on a common standard, making the work
more agile and organized. It would be beneficial for the group members to have
standard code language to understand each other, and it will be essential for Sikri
that the code written follows a certain template. This will make the handover

smoother, and the developers who will continue to work with the product will have
one standard to adhere to. This will help to strengthen the quality of the product
that is delivered, which is a consistent focus area. The code standard can be found
in appendix 5.

3.2.5.1 Project Folder Structure

For storing, organizing, and writing documents, Google Drive has been used as a
platform. Here you can save files and documents as well as create and edit text
documents, spreadsheets, and presentations from Google Docs directly in the
storage medium. Another great advantage of Google Drive and Docs is that you can
edit documents in real-time so that team members can see all the changes that are
made to the same document. This makes the collaboration seamless when working
from different geographical areas.

3.2.5.2 Code Folder Structure

The initial folder structure was based on the "grouping by file type" example from the
React file structure FAQ (Abramov & Redux documentation authors, n.d.-b). Some
folders were added on the initial project setup, for example, a "components" folder.
Others were added later once the related code had begun development (e.g., the
service and data folders). The parts of the file structure added and in use for the
Wizards A application was:

● /components
The components folder contains all react components that are not parent
components for a screen (explained below).

● /helpers
The helper folder contains files for generating data for the Redux store. All
data shown in the initial application are generated through these files, allowing
for a dynamic prototype with newly generated data upon startup.

● /screen
The screen folder is used to hold parent components mapped to the different
URLs of the application. For example, the "/Cases" URL linked to a
CasesScreen component, and the "/Wizard" URL linked to a WizardScreen
component.

● /store
The store folder is used for all Redux-related code. It contains folders for each
slice of the global case, with each containing files for types, reducers, and

actions, and helper files if necessary. This structure was based on the design
patterns from Redux's "Usage with TypeScript" documentation.

In addition, there were folders for fonts, images, and styles.

In the period of sprints 4-6, in Wizard B, additional folders were added for services
and OData. These folders were used for Backend connection and model schemas, as
well as authentication of requests to the core layer.

Sprint 7-9 saw the project refactored, with Redux and component code reduced to
a feature-type folder structure. In short, this grouped related components with one
file for logic concerning the related store slice. A common folder was added to hold
components that were reused throughout the application and not related to one
specific feature (e.g., the sidebar). The components and store folders, as well as their
subfolders, were cut in favor of the new structure.

3.3 Time Management

At the beginning of the project, a document was created and has been used to track
how much all group members work every single day (appendix 6). In this way, it is
ensured that everyone puts in the same amount of work that has been agreed on in
the group contract found in appendix 7.

In addition to an overall time registration, we have used Azure DevOps as a time
estimate in relation to the specific tasks in the coding part of the project. The
reason for having an overall time registration outside of Azure DevOps was because
large parts of this project included administrative tasks, and we did not want them
to be mixed into the development tasks. The time management document can be
found in appendix 6.

3.4 Work Location

It has been a very unusual semester because of Covid-19. Because of all the
restrictions and needs to social-distance, it has been almost impossible to sit
physically together to work on the project. This applies to both work within the
group, but also physical cooperation with Sikri. For communication within the group,

we decided to use Discord throughout the project. All in-group communication took
place on Discord, while all meetings with Sikri were conducted through Microsoft
Teams. We were familiar with Discord from our previous school work, and we learned
how to utilize Teams when working with Sikri.

4 - Sprints
In this chapter, we describe the different sprints and the sequence of events
happening in each sprint. The project was divided into two-week sprints, which
resulted in nine sprints. See the Gantt chart in appendix 8 for an overview of the
sprints.

4.1 Pre-sprint

The pre-sprint was the period between our first meeting with Sikri until the start of
our first sprint. We had multiple meetings with Sikri before starting the project
properly, where we talked about Sikri's goals for the project. We learned that Sikri
wanted a more user-friendly experience for none-frequent users. This was
presented as difficult due to the application Elements had grown severely in
features and time-to-learn. In this regard, the Wizards project could help, as the aim
was to create a smaller and less difficult platform that could be picked up and used
practically in a smaller amount of time, with an easier learning curve for new users.
In addition to the project description and discussions, Sikri informed us about the
technologies to be used in the project, such as React with TypeScript for Frontend
development and .NET for backend development.
In the pre-sprint, we also set some goals for the early sprints: to develop user
stories to define the MVP (minimum viable product) and to finish a first design draft.
We decided on a sprint length of two weeks, as suggested by Sikri, as this would
allow us to be more agile and to work closer with Sikri. We also hoped that changes
in requirements would happen slower than every two weeks, and it gave the
stakeholders the opportunity to wait and see what we had done to the end of the
sprint before making any changes (Rawsthorne, 2020). For the early sprints, we
decided to focus on the definition of user stories for an MVP, including the definition
and development of acceptance tests, as well as on design.

4.2 Sprint 1-3 - Wizard A

In this period, we defined and redefined user stories multiple times, finished early
sketching and design, and developed an application (Wizards A) backed by
program-generated data. In this period, we were in daily dialogue with our project
owner, as well as developers at Sikri, in an attempt to plan the eventual connection
of the project to the NCore servers (the Elements Backend).

4.2.1 Sprint 1

The goals for sprint 1, was to begin the process of developing user stories, sketches,
and design, to draft an MVP specification, to define a backlog, and to begin learning
the Azure DevOps platform.
The sprint was used to develop and redevelop the first version of user stories, as
well as an early design, which provided a foundation for further work. On the last day
of the sprint, the programming project was initialized; to be developed according to
the continually developed user stories and design.

4.2.2 Sprint 2

The goals for sprint 2 were generally to continue the development on all fronts: user
stories, design, and to transform the user stories and design into a prototype or
demo application. The project was also added to the Azure DevOps platform in
order to connect the produced code to defined tasks and to manage Git branches.
Work tasks would be divided between group members, such as project
management and further work in defining user stories, design, and development.
Meeting frequency with Sikri increased, and the first week of the sprint would
include four separate meetings with the project management team, as well as
developers in Sikri. A conversation was started in regards to how the project would,
eventually, connect to the Elements NCore Service. A lot of discussions and ideas
were created by both the group and the team at Sikri, some of which made it into
future sprints and development. The decision that a case should be possible to
process in both the Wizards system, as well as Elements, was made by the project
management at Sikri.
An analysis of the structure of case processing in the Elements system was done,
presenting the hierarchy and structure of cases, registry entries, and documents to

the group. It was decided together with Sikri to focus on a specific type of case to
make sure that the project was focused on quality instead of quantity.
In this sprint, we also presented our design suggestion for the application, and the
product owner decided that they preferred this design over the existing design in
Elements and recommended that we moved forward with our suggestion.

4.2.3 Sprint 3

The Product Owner instructed us to reduce incoming application forms to schemas
(skjema.no), putting aside other forms of cases involving other documents.
The goals for sprint 3 were to design and begin the development of the wizard page
of the application, to be used in the processing of cases defined in incoming
application forms. The incoming application forms were to be processed as defined
schemas, following a standardized XML or JSON format.

Based on new information regarding cases to be processed and the structure of
these incoming application forms, a wizard was designed with a JSON schema
structure in mind. Folders were created for building any potential wizards or
schemas by processing the incoming schemas and rendering the necessary
components.

4.3 Sprint 4-6 - Wizard B

This period was the start of the API connections to Elements Backend. It was also
the sprint where we focused on getting all the group members to get an
understanding of the code written till this point. Pair programming was introduced
here to help the members get an understanding of the different components and
help with further development.

4.3.1 Sprint 4

In sprint 4, time was set off for development and for catching everyone up to speed
in regards to how all the parts of the application worked. Because of the increased
focus on programming and development, members who had focused on design and
user stories in earlier sprints needed additional knowledge about the structure and
development of the project in order to work efficiently. A decision was made to use

pair programming for the sprint and to increase the amount of time spent in
dialogue.

Sprint 4 showed improvement in individual and group development work, which
aided development in future sprints. The sprint began the plans for the connections
to the NCore servers and the OData API and included follow-up meetings to the
earlier meetings with developers at Sikri.

4.3.2 Sprint 5

Our goal for this sprint was to continue the development of the Frontend while
starting preparations with Sikri for a connection to the NCore servers. Besides
Frontend development and improvements, unit tests would be added for the
project.

We were tasked with the challenge of presenting the project to the employees at
Sikri. The presentation took priority for the first week of the sprint and proved an
educational and inspiring experience. The feedback from the director and
employees was very motivating as they were very interested in the project. Overall
feedback was very positive and demonstrated that the company is likely to further
develop the application once our work is completed.

In this sprint, we improved the UI of the Frontend, started the plans for server
connections, and started the development of tests for existing code.

4.3.3 Sprint 6

The overall goal for sprint 6 was to connect the project to Elements and the NCore
servers. This would include an increased amount of meetings with developers at
Sikri to share knowledge and instruct the group.

This sprint was cut short because of Easter. Service files to handle connections to
the NCore service were added and connected to the project case list, based on
analysis and plans from sprints 4 and 5.

4.4 Sprint 7-9 - Wizard C

This period was used to finalize all necessary connections to the Elements server,
refactor and redesign the application to work with and better suit the
Elements/NCore environment, and end the project with a working application.

4.4.1 Sprint 7

Our goals for Sprint 7 were to refactor and redesign in order to ready the project for
the remaining connections with the NCore servers. The structure of the wizard had
to be redesigned, as our implementation was based on specific JSON schemas
which did not reflect the models at the server. Problems in the Redux store, our state
management, had begun emerging, as the structure and models of the store were
implemented before any connections. Too much of the store, and application in
general, was based on early assumptions regarding the structure of the data and
would have to change in order to fit with actual data.

Sprint 7 taught us the importance of agility in project management, as large parts of
our assumptions regarding the application structure were invalid in light of new
information gained from our experimentation with Elements and the NCore servers.

The suggested schemas for incoming application forms (the forms which began a
case) were not directly supported by the NCore servers or the Elements
architecture. Because of this, we had to redefine the product; the view containing
incoming application information would be a PDF viewer, not the customized
schema viewer. The wizard had to be reconfigured as well, as we discovered that our
standardized JSON schema "Wizards" were ill-suited for the task hierarchy structure
of Elements.

4.4.2 Sprint 8

The goals for sprint 8 were to continue the refactoring work and to develop the PDF
viewer and the new and task-based wizard. We spent some time redefining tasks
and features to fit our understanding of the NCore servers and the Elements
environment.

Because of the work done in Sprint 7 in refactoring the project, the adding of an
Elements-connected Wizard and PDF proved successful. This sprint also showed

additional improvement in splitting and delegating work, and time was spent on
tasks and meetings relevant to individual assignments. The program was now, for all
purposes, finished, and only small bug fixes and structure improvements were
added to the Sprint 9 plans.

4.4.3 Sprint 9

The goals for sprint 9 were to get the project ready for handover and to finish the
project report. In finishing the project, some tasks related to bug fixes, structure
improvement, and documentation were added.

5 - Project Execution
This chapter provides an additional description and further details for the activities
performed by the team from beginning to end of the project.

5.1 Analysis

At the beginning of the project, we were given a report that was the result of a
survey conducted amongst some of the Elements users, which provided
background information about the challenge that the users were experiencing and a
description of how Wizards could solve this challenge.

5.1.1 Product scope

The report served as the basis for the product suggestion from Sikri. The report
contained clear wishes from users of Elements. With the basis in the report, we
worked together with the Product Owner, Fredrik Werpen, and the stakeholders to
develop the project scope. Werpen shared the role as stakeholder togheter with
Merethe Sjøberg and Marius Holen at Sikri. The product scope is defined through
user stories created and then narrowed down to an MVP.

5.1.2 Specification

A specification was delivered to us in the report during the pre-sprint by the
product owner. This report included feedback from users of elements and
suggestions to what could be included in the new system. It also contained a
description of the intended user group of the application.

5.1.3 User Stories

Based on the previous report, user stories were created in close cooperation with
the product owner and stakeholders. After the user stories had been made, they
were prioritized with the Moscow method. The Moscow method is a popular
prioritization technique used for managing system requirements (ProductPlan,
2020). This prioritization helped us distinguish between the most important features
and the less important features. All of the user stories prioritized as "must-have"
formed the MVP (appendix 9). These were the minimum and most vital features
required for the application to work as intended. This served as the foundation for
the rest of the project.

5.2 Design

The initial plan was to base the design of the application on a style document
written by developers in Sikri, which was in line with the current Elements design.
Unfortunately, we were not able to get hold of this document for a while, so we
decided to create a temporary design and change it when we had the design
document. But after the first demo with this temporary design, the group was given
more freedom in regards to design choices; and was practically allowed to start
from a blank canvas. Sikri proclaimed from the start that they did not necessarily
want the system to be based upon the design choices of Elements, as the design
choices of Elements were part of the problem Wizards was trying to solve.

5.2.1 Sketches and prototypes.

The normal design procedure is to start with sketches such as wireframes and then
to create mockups. A wireframe is a skeletal blueprint that outlines the basic design
functions of a user interface. A mockup is a more in-depth iteration of the wireframe
that includes more stylistic UI details. The next step is typically to create a
prototype. A prototype is typically a function iterative simulation that includes all
the stylistic details intended for the final product (Lucid Software Inc., 2020).

Because of restrictions due to Covid-19, the team had to get creative to be able to
work on a design together efficiently. In our case, we decided to use an application
called Figma (Kopf, 2018). Figma makes it possible to work together as a team,
designing in real-time from anywhere. In this way, we could hash out our ideas and

implement them fast. In Figma, we could also create high-fidelity wireframes and
mockups easily. It also has the possibility to create clickable prototypes from the
high-fidelity sketches created. See sketches and prototypes in appendix 10 - 11

By utilizing the early user stories we had made with the product owner, we could
start with the design of the application. By showing the product owner the designs
we had made in Figma during our meetings, we could spar together and make
improvements based on our high fidelity sketches in Figma. Being able to compare
and discuss sketches of the application also helped both the product owner and the
group to evolve the design and the user stories, as well as figuring out important
features to be implemented in the project. This was a highly iterative and agile
process and allowed for continuous design improvements in the early sprints.

A few clickable prototypes were made in Figma to give both the product owner and
the group a feel for how the application was seen from a user perspective. After
completing the prototypes, the group received confirmation from the product
owner that coding could begin. The product owner was particularly satisfied with
this process and thoroughly pleased with the design at this point.

5.3 Technical Analysis

Our project can be divided into three different phases, or "programs," separated into
the three different bulks of sprints; Wizards A, Wizards B, Wizards C.

5.3.1 System architecture

Wizard A

The first wizard was mainly supported by application-generated data, meaning data
generated by the Frontend program itself. A helper folder contained helper files
used for the generation of case data, as well as the generation of incoming
application schemas from users to be processed by the wizard. The wizards were
defined in JSON schema files, and component helper files were used to build the
wizard and incoming application interface for the user. Sites, or screens;
components belonging to an URL, were placed in a folder named Screens. All smaller
bits of the surface, or components called upon inside screens, were placed in a
components folder.

For state management, Wizards A had a store folder, which grouped state
management for different parts of the state in folders containing a type definition
file, and actions files, a reducer file, and a helper file. The Redux store initially
managed the state of (1) the system: user (generated upon application start) and
routes, (2) cases: a list of generated cases, the selected case id, and search query,
(3) messages (scrapped before use), and (4) the wizard: holding the currently in use
wizard and incoming application form schemas. See Wizards A in appendix 12.

Wizards B

In Wizards B, the components folder was further separated into smaller groups,
grouping components that belonged to the same screen (e.g.,/components/cases
contained the CaseList and CaseItem components). This program also finished the
initial draft of the wizard, adding additional wizard schemas and additional incoming
application schemas. After finishing a data-generation backed prototype, or demo,
Wizards B began the process of connecting the application to the Elements/NCore
Backend, adding a service folder containing services that held connection related
logic for connecting to a Testing/Development environment of NCore, and OData
folders containing model schemas for the OData objects used. Wizards B updated
the case list to reflect actual cases and allowed a user to search the entire
environment database for cases, filtering on case title, as well as connected user id.
The connected user was hardcoded for all requests to the NCore service. See
Wizards B in appendix 13

Wizards C

In the final implementation of Wizards, all generated data was replaced by actual
data retrieved from the Elements/NCore servers, and an additional production
environment was added. This means that the helper folders, which handled the
generation of the data used by the system, could be removed. Authentication (login,
cookie storage) was added for both the production and development environment,
although different methods were used. Document reading support was also added
to the case details. See Wizards C in appendix 14

The project was generally refactored for performance improvements, and the folder
structure was redesigned for increased readability and to reduce coupling and

improved cohesion. The Redux store was redesigned to fit large updates in the
design patterns in the official documentation.

Wizards C also introduced a redesign of the application: new animations, new icons,
a new logo, some fixes in color scheme, a resizing of application surfaces, and an
improved case detail container. A lot of the redesign was done to improve
understanding for users already familiar with the Elements system while maintaining
ease of use as well as speed-to-learn.

5.4 Risk Analysis

When starting the planning phase of a project, it is important to ask yourself: what
can go wrong? There will always be room for things to fail in a project. This is why it is
important to make an effort to predict what difficulties may lay ahead. This allows
the team to be aware of what needs to be focused on to avoid a major crisis. In
order to keep track of the potential risks, as well as their possible harm, the group
decided to write down and structure the risks in risk analysis; a document used to
track risks. This document was used to describe specific risks, their likelihood of
occurring, and the potential damage which could be inflicted. After initially analyzing
the potential risks, the group has continually documented occurring risks (Bridges,
2019).

5.4.1 Risk Register

The risk register contains a list of 25 identified risks that could have the potential to
negatively impact the project. The risks are sorted and categorized by a defined
score, which is calculated for each risk in the list. The risk score is a combination of a
probability score of 1-5 (the likelihood of a risk to happen) and an impact score of
1-5 (how big of an impact risk has). A higher combination of these two scores results
in a higher total risk score. The list also consists of a short explanation of how to
avoid the risk before it happens and how to limit the impact of the risk if it happens.

A couple of examples of identified risks were: "Poor communication with the Product
Owner," "Getting stuck," and "Illness." The list of risks was constantly monitored and
modified. New risks had to be added as new things not earlier identified occurred.
An example of this was a change in Sikri's team, and was added as "Change in the
client team." The risk register can be viewed in appendix 15.

5.4.2 Issue Log

In the issue log, risks that occur are logged with details attached. The log consists of
a list with what type of risk has occurred, risk score, open/close date as some risks
lasted for longer periods, and a comment that gives more in-depth details about
this particular incident and how it was solved.

Some of the risks in this list were recorded more than others. Technical problems
(risk #17) were a bigger issue than anticipated and eventually had to be updated to
reflect this. The complete issue log with recorded risks can be seen in appendix 16

5.5 Implementation/Development

The development process is very central to the project. This is where the vast
majority of working hours are spent. It was therefore discussed at an early stage and
decided what kind of work process should be followed. This chapter will describe
how the work was carried out in the form of work routines and work distribution.

5.5.1 Work Routines

Well-established work routines are important in projects like this. Scrum can be an
important tool and aid in achieving good work routines. There are, however, many
different ways of implementing Scrum and work routines. The group's
implementation is described below:

5.5.1.1 Sprint planning

Every weekday started at 09:00 with a daily stand-up, which lasted for about 15
minutes or more depending on the situation, the day typically ending at 15:00. These
meetings were conducted via Discord from home because of Covid-19 restrictions.
This worked very well, and the team actually never met physically during the entire
project but collaborated closely digitally. Each sprint lasted for two weeks. The first
Monday of the sprint started with sprint planning. This involved generating new tasks
in Azure DevOps for the sprint, running a Planning Poker to estimate time for each
task, and delegating tasks (appendix 17). Planning poker is a secure and fun way for
agile teams to guide sprint planning and build accurate consensus estimates
(Planning Poker®, 2020). The tasks were generated from features that were created
from all the most important user stories. As tasks were created, they contained a

short and concrete description and acceptance criteria. It also contained a time
estimate, time spent, and time remaining on the task.

5.5.1.2 Implementation

Tasks were delegated to individuals or pairs of two depending on the complexity of
the tasks. Tasks were also created to be finished in a day or less, meaning that if a
task took more than one day, it would be broken down into several tasks. A task was
always connected to a feature, each feature having its own branch. When a task had
met its acceptance criteria, and unit tests had been performed, it was pushed to the
feature branch linked to the task. After all relevant tasks and unit tests connected to
a feature were complete and pushed to its related branch, a pull/merge request
towards the main branch was created. Two members of the team worked as
reviewers in Azure DevOps through the whole project, which meant that no code
could be pushed to the main branch before approval from these reviewers. These
work routines ensured quality throughout the project.

5.5.1.3 Sprint Conclusion

The last Friday of each sprint was used to do a sprint retrospect, a reflection of how
the sprint went, and to merge all branches not already merged into the main branch.
This was followed by a sprint review and demo with Sikri highlighting the progress of
the project. The last task of the day was to close the sprint in Azure DevOps after
consulting with Sikri.

5.5.2 Work Distribution

At the beginning of the project, the group decided that all members should
participate in all, or most, activities, in order to maximize learning outcomes for
everyone. To some extent, it was possible to maintain this, although there was some
further distribution of tasks closer towards the end of the project, as roles were
more clearly defined. In the work phase of the project, all the members helped to
organize the startup by reading up on project management, as well as the various
components needed. Everyone attended the meetings with Sikri, and we made user
stories together as a team.

When the programming started, we maintained an interest in everyone participating,
in order for everyone to understand how the program and the overall code functions.

As mentioned, further towards the end of the project, the task division changed
slightly, as the number of tasks increased, while the amount of remaining time did
not. We found that it required an incredible amount of work for everyone to have an
equal understanding of all the work, and therefore chose to divide the work focus a
little differently. As the aim was still some equal contribution, we maintained some
balance of activities, although everyone became more specialized. Two group
members prioritized coding, while the other two group members prioritized project
management and report writing, although everyone has contributed to all parts of
the project to a certain degree.

6 - Quality and Testing
In this section, we will explain the steps the team has taken to assure quality
throughout the entire project and how testing was done to achieve this.

6.1 Quality Assurance

Early in the project, we discussed how we could keep a high standard of quality in
the project. We had a goal as a team to deliver a product of high quality and to learn
as much as possible. In projects of this magnitude, it is important to keep track of
everything that leads to a successful and high-quality product. To enforce this, as
mentioned previously, we focused on setting up a proper folder structure to keep
everything well organized. It was expected that this project would expand, and in the
end, consist of many documents.

The group members had different experiences in regards to working on projects
such as this. It was then decided to set up code standards and guidelines to
support us with the project. These documents can be found in appendix 4, 5, 18, 19,
20, 21. Pair programming was also adopted to help with the disconnect in experience
between the team members. Following guidelines and working in pairs of two would
help us learn more as well as enforcing high quality. Ensuring that features were
tested and the acceptance criteria were fulfilled was something we valued. This was
to ensure the application performed as expected and to ensure the features fulfilled
their requirement definitions. A standard for commenting and description was set
up for the codebase in the hope that these standards can help ensure high quality
and a smooth handover and transfer of the product to Sikri.

6.1.2 Acceptance Criteria

All user stories had their own acceptance criteria. Acceptance criteria are a set of
predefined requirements that must be fulfilled to mark a user story complete.
Acceptance criteria are also sometimes called the "definition of done." This is
because they determine the scope and requirements that must be executed to
consider a user story finished (ProductPlan, 2020). These criteria were approved by
the stakeholders. For a user story to be set as complete, these criteria must be met,
and the feature(s) correlated with the user story must be tested and confirmed by
at least two members of the project team.

6.1.3 Code Standard and Guides

Guidelines and code standards were developed to support the team with the
different tasks tied to the project. Git guide (appendix 4), Redux guide (appendix
20), React-components guide (appendix 19), branch guide (appendix 21), sprint
review, and sprint guide (appendix 22) were guides we developed together to get a
uniform understanding of how to work with the different technologies and how to
get started and implement new features. They also assisted us in how to deem a
task complete and guided us with the necessary steps to complete a merge to the
main branch.

6.1.4 Pair Programming

Pair programming has been used frequently during the project. Pair programming is
an agile software development technique where two programmers work together on
a computer. In our case, this happened with screen sharing over Discord. One of the
programmers is the "driver" (screen-sharer), and the other programmer is the
"observer" (watching the video stream) (Wikipedia contributors, 2021e).
This was helpful in our case as it was easier for the observer to spot mistakes in the
code while the driver was coding, also discussions on what methods, approaches,
and sharing of ideas can be made on the fly.

6.1.5 TypeScript

TypeScript will help keep high quality and ensure the code is working properly by
requiring types. A key difference between TypeScript and JavaScript is that
TypeScript needs to be compiled while JavaScript code does not need to compile

(Rungta, 2021). In JavaScript, types are inferred in runtime and might run into issues
or errors when running. With TypeScript, these errors will be caught in the compile
step. This leads to higher quality and less time-consuming debugging. Having to set
types for everything will help complement unit tests as there is no need to create
unit tests that are testing the types. This is built-in for TypeScript.

6.1.6 Comments and Descriptions

As the project developed, the need for comments and descriptions for the
codebase increased. A comment in computer programming is a readable
explanation or annotation of a block of code in the source code. Their purpose is to
make the source code easier to understand for humans (Wikipedia contributors,
2021f). This was especially important because it would make the handover process
of the project and code to Sikri much smoother.

6.1.7 Refactor

Later in the project, after several changes to the Scope/MVP, we saw the need to
tidy up the codebase. As some functionality was dropped and better solutions were
found, we decided to make a proper refactor of the code before the handover to
Sikri was going to happen. Code refactoring, in computer programming, is the
process of restructuring existing code without changing its behavior. Refactoring is
intended to improve the code while preserving the functionality. Advantages of
refactoring may include improved code readability and reduced complexity. This will
then help the source codes maintainability and sometimes improve performance
(Wikipedia contributors, 2021g).

The Wizard applications' Redux store had been modeled on the design patterns
documented in Redux's "Usage with TypeScript" documentation. These design
patterns were redefined by Redux later on, once the Redux Toolkit was added to the
recommended approach of how to use redux (Abramov & Redux documentation
authors, n.d.-c). The previous design patterns had advocated a folder structure that
split the code, defining the configurations, for state management between a large
number of files, which proved time-consuming to work with. Any time the state of
the application had to be redefined, changes had to be made to up to four files. It
also made it more difficult to get a quick overview of the code. A decision was made
to refactor the structure to fit the new design patterns. With the refactor, we

achieved a more readable source code as well as improved design and performance
by reducing coupling and improved cohesion.

6.2 Testing

In software development projects, it is important to locate and deal with errors and
flaws as early as possible. This is where testing comes in. It will help locate these
flaws or errors early and prevent future errors that may lead to setbacks in
development. After every new major feature is added, it is a good idea to conduct
tests to ensure quality. This is to remove potential errors or flaws that may be an
issue when implementing new features.

6.2.1 Unit Testing

Unit testing is a type of software testing where components or individual units of
software are tested. The purpose is to validate that each unit of the code performs
as expected (Rungta, 2021). Unit tests lead to a high-quality and robust software
system. Unit tests were performed on state updates as well as data fetching
functions and utility functions. User interface components were tested in the later
part of the coding process when the components were decided to be included in
the end product. An example of a unit test can be found in appendix 23.

6.2.2 User Test and Demos

At the end of every sprint, there was a demo of the application. This was to show the
design and functionality to the Product Owner. In these demos, it was possible to
pinpoint problems and necessary changes the Product Owner wanted. This helped
the stakeholders to steer the project in the right direction and make changes to the
scope of the project as obstacles were encountered. In the beginning, only the
Product Owner and coordinator had access to these demos, so the feedback was
limited. We brought this up, and they agreed to ask other employees in Sikri to see
some of the demos.

Later in the project, we got the opportunity to test the application with real users of
Elements. These tests were conducted by the Product Owner, and the feedback was
given to us continuously over Teams meetings.

7 - Reflection
This chapter will address several different aspects of the project, including project
management, the quality of the end product, and the risk management process.

7.1 Changes and Challenges

This section is about the changes and challenges linked to the product definition
and MVP, code, resources, and risk management.

7.1.1 Product and MVP Definition

At the beginning of the project, the MVP seemed easier to define than it turned out
to be, and it became increasingly difficult to contain the scope within the original
definitions. The first challenge that arose was the lack of experience in defining an
MVP within the group. The second challenge was the fact that no members had any
experience with case processing, which made it more difficult to define an MVP for a
case processing software. The third challenge was the unfamiliarity and lack of
knowledge with the massive code base of Elements and the depth of technology. As
all these challenges were mended incrementally, as the group gained experience,
the originally defined project had to be refactored to better fit an increased
understanding. The use of 14-day sprints allowed increased agility in this regard.
Practically, this was done through a rigorous sprint retrospective and sprint planning,
in which the group fixed and rethought feature and task definitions.

The main parts of the original MVP and project definitions that proved difficult were
the shape of, or models for, the wizard and the incoming application form.

7.1.2 Code

The developed code has gone through several iterations throughout the project, and
a sufficient connection between code, product definitions, and project management
has shown itself important. Finding a good balance between strictness and flexibility
proved difficult but became easier as the project became more developed.

7.1.2.1 Incoming Application

The incoming application is the part of the Wizard program that displays the
incoming case details to the caseworker. While the Elements software provides
incoming applications as PDF or DOC/DOCX files, the group was instructed in the
early sprints to base incoming applications on forms (or schemas) structurally
defined in an XML or JSON format. (For examples on such forms, see
https://www.skjema.no/). The intention was for this to simplify the incoming
application form in the application, as these schemas were transformed to a
standardized format through the Elements Backend layers. Early development was
done with this in mind, and the first finished demo program - Wizards A - built on
the idea of these forms.

After the initial connections to the NCore servers were completed, and connections
were to be made for the Wizard and application forms, it became apparent that
these schemas and formats were not made available and could not be served
through the API (without a large amount of additional work for the Sikri developers).

A decision was made to rebase the incoming applications on the PDF and
DOC/DOCX files, and the original view for incoming applications was scrapped. An
added benefit of this was the fact that Elements had a component for document
viewing for PDF and DOC/DOCX files, which was added to the project in place of the
previous schema-based preview.

Though not directly following the initial challenges mentioned, the challenges that
arose in the development of the incoming application view could have been
mitigated with sufficient knowledge of the Elements code base and environment. If
inevitable, the example points out the importance of agility in project management
and the value of a close dialogue with developers with relevant experience.

7.1.2.2 The "Wizard."

The wizard is the part of the application that the caseworker uses in processing a
case. The initial wizard was developed for Wizards A at the end of sprint 3 when the
group was still lacking in technical depth in regards to the Elements code base and
environment. Inspired by the application viewer, the Wizards code served as a
"Wizards Builder," rendering the wizard based on an incoming JSON schema. For

https://www.skjema.no/

demonstration purposes, these schemas were hardcoded and connected to each of
the three defined application schemas mentioned above. The Wizards A project
made some assumptions in regard to the structure and models of the backend,
which caused some time spent on refactoring and rebuilding. Although the Wizards
A had been built mainly for demonstration purposes and design testing, it could
have proven more effective to implement it "correctly" the first time. However, the
early demo software increased discussion points and led to a better understanding
of the intended product and its implementation. It also allowed for a larger amount
of reiterations over design, which further improved the final product.

7.1.2.3 General

Besides the difficulties relating to fitting the code inside the project and MVP
definitions and within project plans, there were some additional challenges. One
challenge that proved more difficult than initially foreseen was the fact that the
project had to be developed by the group as a team. Differences in experiences,
methods, and knowledge made the requirement of rigorous standards and
documentation is key to effective development. Increased discussion, and sharing of
knowledge, became important in order to familiarize everyone with the frameworks
and concepts the project was built on.

Although one came after the other, the initial progression speed of the project was
made possible through simultaneous work on defining user stories, designing the
program, and developing the program. This led to a lot of early code being written
while some members were working on user stories and design. This made it more
difficult for everyone to jump in and contribute immediately once the user stories
and design stages were finished. In order for everyone to gain an understanding of
the written code, the group chose to increase communication and implement the
use of pair programming for development in Sprint 4.

7.1.3 Resources

In this chapter, we talk about the different resources that were available to the group
during this project, both human and technical resources.

7.1.3.1 Human Resources

In a company like Sikri with over a hundred employees, there are many human
resources (HR's) available, and Sikri made them available to us. This was positive
because there was always someone that had an answer to the question at hand.
However, we also discovered some of the negatives with this. One of these negative
things was that even though the right HR exists somewhere within Sikri, finding the
right HR can be difficult.

Many meetings with different HR's were held before finding the right one. This was
time-consuming and not something we had accounted for in the planning phase of
the project. However, when the right HR's were found, the answer was usually very
helpful and satisfying. Another discovery we made was that the knowledge of the
HR's within the company typically was specialized in a specific area. This meant that
there were few, if any, with Fullstack competence. This required meetings with many
HR's to get the complete picture of information needed to solve a specific problem.

7.1.3.2 Technical Resources

Connection with the Backend had some challenges. The test cases provided did not
match real cases. Another issue was that a case had several posts tied to the case,
and the workflow we needed to process the case could be tied to different posts.
Because of this, there was confusion about how we wanted to implement the
feature related to a case process. This was later solved in discussion with Sikri. We
were to focus on the first post, and the workflow was tied to the first post of the
case.

Another issue we encountered was that the development environment we were
connected to went through some maintenance, and therefore work related to that
came to a stall. This was temporarily solved when we got access to another
environment Sikri used for testing. However, this was time-consuming, and the test
cases were different from the original environment.

7.1.4 Risk Management

In the beginning, we struggled to see the positive outcome trying to predict what
could possibly go wrong. We had done earlier school projects without it and had not
encountered too many problems. However, it would turn out that risk analysis had its
benefits after all as we encountered several of the risks listed.

Some risks were solved with temporary solutions like the technical problem with the
development test environment being offline. The impact could have been mitigated
if we had other tasks to work on, but in this case, we had a deadline tied to the task
that relied on the environment is online. To limit the impact of this risk, we had to get
access to another test environment. This worked out well, and we finished the task
within the deadline. Other risks could only be mitigated and not resolved, like
absence from team members due to illness (appendix 16).

Having done a risk analysis helped the group to know what to do when risks
occurred. It also helped with general risk management and when new risks
appeared. In retrospect, we have a good understanding of why risk management is
important, as it can help a project to become successful.

7.1.5 Keeping the Project Agile

By having frequent meetings with the product owner and not being afraid of making
changes to the requirements, even late in the project, the group was able to keep
the development process agile. There were many changes throughout the project,
as mentioned earlier, but by reflecting on what we had learned through the different
sprints, we were able to adapt and overcome these challenges. This was especially
important towards the end of the project when the deadline was getting close.
Some big changes were made, and we had to utilize what we had learned to be as
efficient as possible and to make that deadline, which we did by being agile.

7.2 Learning Outcomes

In this section, we talk about some of the experiences and things we have learned
during this project.

7.2.1 Professional Evening

The team was asked by the product owner to present the project at a professional
evening (PE) with the employees of Sikri. A PE is a forum where employees have the
opportunity for personal development and to share knowledge. This specific PE was
hosted via Microsoft Teams due to the ongoing pandemic. Here we held a
30-minute presentation of the project. About 35 employees attended this meeting,

including the CEO of Sikri. The meeting was also recorded and shown to many more
employees and has been shown in several other events.

This experience was very exciting for the entire group, and the first time most of us
had ever had a presentation resembling what would be more common in the real
world. The presentation was also very positively received by the employees of Sikri
and was, all in all, a very positive experience for the entire group.

In the beginning, we did not understand the impact this presentation had. But during
later unrelated meetings, we found out that our project had been presented to the
entire staff of Sikri in a morning meeting. This gave us the feeling of really working on
something important and increased our motivation even further.

7.2.2 Project Management

Project management was a concept we were quite unfamiliar with. From knowing
very little to being able to manage a whole project from start to finish required
discipline. We have learned about different tools that help with project
management, such as Gantt chart, Planning Poker, project management tools such
as Azure DevOps, general project planning, and the value of having a plan to follow.

How to delegate tasks and time estimation of these tasks were skills we developed
during the project and might have been the best experience from the project
management side.

7.2.3 Technical Skills

The group developed several technical skills during the project. These skills were
tightly tied to the technologies we used, like React, Redux, TypeScript, API/Odata,
and Git. Some of us had experience with some of these technologies from past
projects, and for some of us, it was a completely new experience. Anyhow, we all
learned and evolved as developers and project managers during this project.

The main technologies used in this project were React and Redux, written in
TypeScript. These technologies are the fundamentals of the project, and it was
crucial every team member became familiar with them. We all got different levels of
understanding of this, but all in all, this was a success. We learned that even though

TypeScript felt slower in the beginning to use, it rewarded us with fewer errors in the
end.

As mentioned earlier, we decided to split the team to cover more ground, and
therefore the skills absorbed were different for each group member. One part of the
team focused on the API/OData part for connection to Sikris APIs. The other part
focused on the project management part of the project. When it comes to the API
part, we learned how this worked and how to look through the network tab to
understand the flow of connections to different APIs.

How to use version control, like Git, properly was an important skill we developed. As
we started with more features and developed several parallel features, we saw the
need to keep control over the different versions. This is done through Git and their
branch system.

7.2.4 Cooperation Skills

A large project like this requires good collaboration skills. The challenges are many,
and it is important that everyone collaborates and pulls in the same direction. If
there is poor coordination and many misunderstandings, it will be difficult to deliver
a good product. Everyone was aware of this from previous collaborations, and this
project has some extra factors that make it even more difficult.

7.2.4.1 Planning

In the pre-sprint and into the first sprint, the group made a number of documents to
be able to keep track of everything that concerned the project. This choice has
proven to increase our productivity since a lot of organization makes it easier for
everyone involved to keep up with what is going to happen at any given time.
Something we learned is to set up a Gantt chart from the very beginning. Our
solution at the beginning of the project was to create an overall plan in Google
Sheets from scratch (appendix 24). This worked well for a short period but quickly
became confusing when there were many tasks to be completed. Fortunately, we
were introduced to the Gantt chart and implemented this with great success. It gave
both the client and us a good overview of when the various tasks were planned to be
completed.

7.2.4.2 Meetings

None of us had much experience of communicating with clients in a professional
context, but we did it many times throughout the project, and today we are left with
a lot of experience in this area. In the beginning, we had a slightly sloppy structure in
the meetings we were to present project status. We received feedback on this from
the Product Owner in the form of constructive criticism. Of course, we took this into
account and managed during the course of the project to tighten this up so that the
meetings under our auspices were tight and concise. The collaboration we had with
Sikri was very educational and fun. They were honest and fair and always gave us
tips on how to improve and prepare for the future at work.

7.2.4.3 Delegate Work

In the beginning, the group members worked a lot together with all the tasks related
to the project. There was a lot to learn, so the road was created as we walked it. It
worked well in the beginning, but as the tasks became more complex and the
deadline approached, we had a discussion about how we should cooperate further.
This choice took place approximately in the middle of the project, and we then
came to the conclusion that we had to delegate the tasks more to the members
who were best at the respective tasks. This choice was well reflected, and we see in
retrospect that it was absolutely necessary for the project to be completed with
high quality and on time.

7.2.4.4 External Guidance

The complexity of the project was a bit uncertain when we started the development.
It was not very specified by Sikri what challenges we were going to face. There was a
certain understanding of everything that needed to be done, but as the project
developed, we encountered many challenges. In the beginning, we spent a lot of
time-solving these problems ourselves. It took a lot of time, and the motivation
sometimes decreased with the feeling of not getting the job done. Sikri said early in
the project that the resource persons in Sikri were ready to help if problems
occurred. We became much better at using this in the last half of the project. We
received invaluable help from developers and project managers. We, therefore,
learned that it is sagacious to ask for help and that the client benefits when we solve
the tasks efficiently and correctly.

7.2.5 Self Evaluation

This project was developed by the members of /*TODO*/. The members put in an
equal amount of work, As mentioned in the report, there has always been a focus on
learning, and every member has contributed in some way to all the big tasks.
Anyway, as the project evolved, the tasks were more distributed to the members
with the best knowledge on given tasks. Below, the group members will describe
more details about personal contributions and thoughts about the project in
general.

Aleksander Larsen
During the project, my goal was to gain experience in how project management and
software development were done in a real project. During the project, my tasks have
been diverse. I have been fortunate to be involved in some form or another in every
part of the project, such as programming, design, writing meeting summaries from
meetings, planning, and more. I have been able to use a lot of the knowledge gained
in BACIT. Some of these are: IS112-Tjenestedesign og foretningsmodeller (design og
applications), IS 104 Digital interaksjonsdesign (design) IS 202
Programmeringsprosjekt (programming), IS 200 Systemanalyse og systemutvikling
(analysis) and IS 308 Internetteknologier (Creating docker image and deployment of
application). I have been able to use this knowledge, see it in use in a real-world
context and develop them further. Finally, it has been very interesting to see how it
is to be working in teams in a real project and how important project management is
to be in control of the project.

Ole Haraldseth
In this project, my main tasks have been project management. I have worked as a
Scrum Master, and that role made it my responsibility to make the project
management to work out smoothly. Tasks that have been in focus includes
communication with Sikri, meeting planning, meeting management, document
management and more. In addition, I have participated in the work that had to be
done in the initial phase of creating user stories, designing elements in Figma, and
creating and managing documents for time registration, Gantt chart, and standard
documents. Coding has not been my most central work area, but in the first half of
the project, I contributed a good deal of coding of various elements of the
application. It has been a very instructive project, and the knowledge gained on the

Bachelor's program in IT has come in very handy. I would especially like to highlight
the subjects related to project management. An example of a subject that has been
central to my work areas in this project is "IS-200 System analysis and system
development ". Here we learned about how Scrum can be used in a project, and it
has made me much more confident in the role of Scrum Master. Finally, I would like
to add that the collaboration within the group has been very good, and the lessons
learned from working together closely as a group with an external part comes with
great learning outcome.

Daniel Mossestad
My main focus in this project was to work with Fredrik with the code development
part. This includes writing components, data fetching functions and help with the
overall design in the application. Another big task was to support Ole with the
project management part. This includes document management, taking notes, and
writing summaries of meetings. In the early sprints, we all worked together with
creating user stories, designing components in Figma, and creating and managing
documents for standards, time registration, and Gantt chart. It has been a steep
learning curve, especially in the start, in the project and I have learned a lot! Most of
the knowledge gained from the bachelor's program in IT has come in handy when
tackling a project like this. Fundamentals learned from the subjects like "IS-110
Objekorientert programmering" and "IS-211 Algoritmer og datastrukturer" was a big
support to help further learn more about software development. Subjects like
"IS-308 Internetteknologier" and "IS-214 Informasjonssystemsikkerhet" introduced
important technologies and aspects about information systems that also helped a
lot when understanding the new technologies that are available on the web. I also
want to point out that the subject "IS-104 Digital interaksjonsdesign" introduced my
passion for creating better user designs. In general, my experience from this project
has been pleasant. The group has had a very good synergy and collaborations have
been a breeze!

Fredrik Meltveit
I acted as the lead developer throughout the project. I divided and set tasks
between group members in Azure and reviewed pull requests together with Daniel. I
also set up the project and the initial tech stack, wrote the code standards to be
used for the team, and sketched out the initial design of the application.

My design and development skills have improved a lot since I began my studies. I
initially began learning Figma in "IS104-Digital interaksjonsdesign" as a design
alternative and Spring (which is used to serve the deployed versions of the website)
during "IS202-Programmeringsprosjekt(programming)".

7.3 Statement from Client

8 - Conclusion
In collaboration with Sikri, we have created a product named Wizards, which is a light
version of Elements. The main goal for Sikri was to develop a user-friendly, modern,
and light alternative to Elements. We had a few limitations with the programming
language and workflow. Other than those limitations, we had free rein. The freedom
and trust Sikri gave us is much appreciated because it put our creativity and
independence to the test. In addition, we discussed within the group so that it was
agreed on which programs and technologies seemed relevant concerning the issue
we had. We see our project as a great success. The client has given good feedback
and views the product as finished and with very satisfactory quality. Sikri has
announced that the product will be adapted to customers and sold for relevant
cases already in the autumn.

The learning benefits of this project have been incredible. The group members have
acquired large amounts of knowledge regarding programming and software
development, but many of the lessons are about project management, group
collaboration, and working closely with an external client. This new knowledge will
come in handy in the future when entering the labor market.

In addition, all the group members have contributed significantly to this project
ending up as a success. Different members have different strengths, and we have
utilized and distributed this in a good way. The communication has been excellent,
both within the group but also in connection with Sikri. There has been persistent
meeting activity through Microsoft Teams with Sikri, which has led to the
impeccable communication flow.

The product is currently deployed and retrieves real live data from Sikri's archive
core. It connects to a test environment, but when the application is handed over to
Sikri, they can easily connect it to the active archive core when they want to use the
product for their customers. In other words, it is an application that is fully
executable and ready for customers to use, something we are very proud to have
achieved.

References
Abramov, D. A. & Redux documentation authors. (n.d.-a). Redux Toolkit | Redux

Toolkit. Redux Toolkit. Retrieved April 28, 2021, from
https://redux-toolkit.js.org/

Abramov, D. A. & Redux documentation authors. (n.d.-b). Redux Toolkit | Redux
Toolkit. Redux Toolkit. Retrieved January 20, 2021, from
https://web.archive.org/web/20210202221558/https://redux.js.org/recipes/usa
ge-with-typescript/

Abramov, D. A. & Redux documentation authors. (n.d.-c). Redux Toolkit | Redux
Toolkit. Redux Toolkit. Retrieved January 20, 2021, from
https://redux.js.org/recipes/usage-with-typescript/

Abubakar, A. M., Elrehail, H., Alatailat, M. A., & Elçi, A. (2019). Knowledge
management, decision-making style and organizational performance. Journal
of Innovation & Knowledge, 4(2), 104–114.
https://doi.org/10.1016/j.jik.2017.07.003

Beck, K. B., Beedle, M. B., Bennekum, A. V. B., Cockburn, A. C., Cunningham, W. C.,
Fowler, M. F., Grenning, J. G., Highsmith, J. H., Hunt, A. H., Jeffries, R. J., Kern, J. K.,
Marick, B. M., Martin, R. C. M., Mellor, S. M., Schwaber, K. S., Sutherland, J. S., &
Thomas, D. T. (2001). Manifesto for Agile Software Development.
Agilemanifesto. https://agilemanifesto.org/

Bridges, J. (2019, December 9). Risk Analysis 101: How to Analyze Project Risk.
ProjectManager.Com.
https://www.projectmanager.com/training/how-to-analyze-risks-project

Git. (n.d.). Git. Git --Fast-Version-Control. Retrieved March 25, 2021, from
https://www.git-scm.com/

Hastie, T., & Tibshirani, R. (1998). Classification by pairwise coupling. The
Annals of Statistics, 26(2), 1–4. https://doi.org/10.1214/aos/1028144844

https://redux-toolkit.js.org/
https://web.archive.org/web/20210202221558/https://redux.js.org/recipes/usage-with-typescript/
https://web.archive.org/web/20210202221558/https://redux.js.org/recipes/usage-with-typescript/
https://redux.js.org/recipes/usage-with-typescript/
https://doi.org/10.1016/j.jik.2017.07.003
https://agilemanifesto.org/
https://www.projectmanager.com/training/how-to-analyze-risks-project
https://www.git-scm.com/
https://doi.org/10.1214/aos/1028144844

Lucid Software Inc. (2020, February 27). Wireframes vs mockups: Determining
the right level of fidelity for your project. Lucidchart.
https://www.lucidchart.com/blog/wireframes-vs-mockups#:%7E:text=A%20m
ockup%20is%20a%20static,mockup%20is%20a%20visual%20mode

Kopf, B. (2018, July 31). The Power of Figma as a Design Tool. Toptal Design
Blog. https://www.toptal.com/designers/ui/figma-design-tool

Material Design. (n.d.). Material Design. Retrieved February 2, 2021, from
https://material.io/

Material-UI. (n.d.-a). About Us - Material-UI. Retrieved April 13, 2021, from
https://material-ui.com/company/about/

Material-UI. (n.d.-b). Material-UI: A popular React UI framework. Retrieved April 14,
2021, from https://material-ui.com/

OData. (n.d.). OData - the Best Way to REST. OData – The Protocol for REST APIs.
Retrieved May 7, 2021, from https://www.odata.org/

Planning Poker®. (2020, August 28). PlanningPoker.com - Estimates Made Easy.
Sprints Made Simple. PlanningPoker.Com. https://www.planningpoker.com/

ProductPlan. (2020, October 19). What is acceptance criteria? | Definition and Best
Practices. https://www.productplan.com/glossary/acceptance-criteria/

ProductPlan. (2021, February 18). What is MoSCoW Prioritization? | Overview of the
MoSCoW Method.
https://www.productplan.com/glossary/moscow-prioritization/

Redux. (n.d.). Redux - A predictable state container for JavaScript apps.
Retrieved May 10, 2021, from https://redux.js.org/

RhodeCode. (n.d.). RhodeCode › Version Control Systems Popularity in 2016.
Retrieved April 28, 2021, from
https://rhodecode.com/insights/version-control-systems-2016#:%7E:text=Th
e%20data%20from%20Stack%20Overflow,and%20Mercurial%20keep%20thei
r%20niches.

https://www.lucidchart.com/blog/wireframes-vs-mockups#:%7E:text=A%20mockup%20is%20a%20static,mockup%20is%20a%20visual%20mode
https://www.lucidchart.com/blog/wireframes-vs-mockups#:%7E:text=A%20mockup%20is%20a%20static,mockup%20is%20a%20visual%20mode
https://www.toptal.com/designers/ui/figma-design-tool
https://material.io/
https://material-ui.com/company/about/
https://material-ui.com/
https://www.odata.org/
https://www.planningpoker.com/
https://www.productplan.com/glossary/acceptance-criteria/
https://www.productplan.com/glossary/moscow-prioritization/
https://rhodecode.com/insights/version-control-systems-2016#:%7E:text=The%20data%20from%20Stack%20Overflow,and%20Mercurial%20keep%20their%20niches
https://rhodecode.com/insights/version-control-systems-2016#:%7E:text=The%20data%20from%20Stack%20Overflow,and%20Mercurial%20keep%20their%20niches
https://rhodecode.com/insights/version-control-systems-2016#:%7E:text=The%20data%20from%20Stack%20Overflow,and%20Mercurial%20keep%20their%20niches

Rawsthorne, D. (2020, November 22). Sprint Length: What’s the Right Length? -
3Back Blog. 3Back.
https://3back.com/scrum-tips/sprint-length-what-length-is-the-right-length
/#:%7E:text=It%27s%20a%20rule%20of%20Scrum,Story%20and%20get%20it
%20Done.

Rungta, K. (2021a, March 8). Typescript vs JavaScript: What’s the Difference? Guru99.
https://www.guru99.com/typescript-vs-javascript.html

Rungta, K. (2021b, May 9). Unit Testing Tutorial: What is, Types, Tools & Test
EXAMPLE. Guru99. https://www.guru99.com/unit-testing-guide.html

Tech Terms. (n.d.). Wizard Definition. Retrieved May 12, 2021, from
https://techterms.com/definition/wizard

TypeScript. (n.d.). Typed JavaScript at Any Scale.
https://www.typescriptlang.org/

University of Massachusetts Dartmouth. (n.d.). Decision-making process.
UMass Dartmouth. Retrieved January 20, 2021, from
https://www.umassd.edu/fycm/decision-making/process/#:%7E:text=Decision
%20making%20is%20the%20process,relevant%20information%20and%20def
ining%20alternatives.

Wikipedia contributors. (2021a, May 6). Systems development life cycle. Wikipedia.
Retrieved May 10, 2021, from

https://en.wikipedia.org/wiki/Systems_development_life_cycle

Wikipedia contributors. (2021b, May 8). React (JavaScript library). Wikipedia.
Retrieved May 11, 2021, from
https://en.wikipedia.org/wiki/React_(JavaScript_library)

Wikipedia contributors. (2021c, May 12). Redux (JavaScript library). Wikipedia.
Retrieved May 13, 2021, from
https://en.wikipedia.org/wiki/Redux_(JavaScript_library)

Wikipedia contributors. (2021d, April 23). Material Design. Wikipedia. Retrieved May
6, 2021, from

https://3back.com/scrum-tips/sprint-length-what-length-is-the-right-length/#:%7E:text=It%27s%20a%20rule%20of%20Scrum,Story%20and%20get%20it%20Done
https://3back.com/scrum-tips/sprint-length-what-length-is-the-right-length/#:%7E:text=It%27s%20a%20rule%20of%20Scrum,Story%20and%20get%20it%20Done
https://3back.com/scrum-tips/sprint-length-what-length-is-the-right-length/#:%7E:text=It%27s%20a%20rule%20of%20Scrum,Story%20and%20get%20it%20Done
https://www.guru99.com/typescript-vs-javascript.html
https://www.guru99.com/unit-testing-guide.html
https://www.typescriptlang.org/
https://www.umassd.edu/fycm/decision-making/process/#:%7E:text=Decision%20making%20is%20the%20process,relevant%20information%20and%20defining%20alternatives
https://www.umassd.edu/fycm/decision-making/process/#:%7E:text=Decision%20making%20is%20the%20process,relevant%20information%20and%20defining%20alternatives
https://www.umassd.edu/fycm/decision-making/process/#:%7E:text=Decision%20making%20is%20the%20process,relevant%20information%20and%20defining%20alternatives
https://en.wikipedia.org/wiki/Systems_development_life_cycle
https://en.wikipedia.org/wiki/React_(JavaScript_library)
https://en.wikipedia.org/wiki/Redux_(JavaScript_library)

https://en.wikipedia.org/wiki/Material_Design

Wikipedia contributors. (2021e, April 25). Pair programming. Wikipedia. Retrieved
May 10, 2021, from https://en.wikipedia.org/wiki/Pair_programming

Wikipedia contributors. (2021f, April 15). Comment (computer programming).
Wikipedia. Retrieved May 11, 2021, from
https://en.wikipedia.org/wiki/Comment_(computer_programming)

Wikipedia contributors. (2021g, April 7). Code refactoring. Wikipedia. Retrieved May
11, 2021, from https://en.wikipedia.org/wiki/Code_refactoring

https://en.wikipedia.org/wiki/Material_Design
https://en.wikipedia.org/wiki/Pair_programming
https://en.wikipedia.org/wiki/Comment_(computer_programming)
https://en.wikipedia.org/wiki/Code_refactoring

Appendix
This section will illustrate central documents and figures used in this project. Some
of the figures are excerpts of the whole document for demonstration and
visualization purposes.

Appendix 1 - Product Backlog Azure DevOps

The list is longer, but this is a view of how it is built up.

Appendix 2 - Sprint Backlog Azure DevOps

Appendix 3 - Taskboard Azure DevOps

Appendix 4 - Git Guide

Git
Prosess før man sender pull request og merger brancher. Dette vil gjøre at man håndterer
conflicts før man merger. Dette vil utelukke feil/conflicts i main branchen.

1. Pull siste endringer i main og feature branch
a. Git checkout main
b. Git pull

2. Switch over til feature branch og rebase
a. Git checkout <feature-branch>
b. Git rebase main -i (-i blir brukt for å gjøre den interactive)
c. Man åpner da Vim editor der man kan se commits som er gjort. Her trengs det

som oftest bare å se over og lagre dette med:
i. :wq

d. Om det blir conflicts må man ordnet dette her og adde de filene man fikser
conflict i

i. Spør om hjelp, kan legge mer detaljert til her senere.
3. Til slutt lage pull request:

a. Vi gjør dette via Azure devops
b. Lag navn på PR og legg til kommentar
c. Link relevante work items
d. Legg til reviewers
e. Create PR

Appendix 5 - Code Standard

Kodestandarder Wizards
Indentation (tab size): 2
Godkjente filtyper for screens og components: .ts, .tsx
Styling: makeStyles

- Styling gjøres gjennom makeStyles() funksjonaliteten til Material UI
- Spacing (Margin/Padding):

- Spacing gjøres gjennom theme.spacing funksjonaliteten fra
makestyles(theme). Standard spacing bør være theme.spacing(1) eller
theme.spacing(2).

Komponenter: Functional
- Arrow: const component = () => { }
- Funksjon: function component() { }
- Bruk den du foretrekker
- // En konsekvens as functional components er at noen ting gjøres annerledes enn i Class

based components. Kan skrive detaljer om dette etter hvert.
Kommentarer:

- Kommentar over hver unik komponent /** */
- Kommentar over hver unik screen /** */
- Kommentar til lengre funksjoner i screens og components
- Kommentar over kategori av imports
- !NB Les følgende:

- https://react-styleguidist.js.org/docs/documenting/
- “!TODO”

- Ting som må gjøres
- “!Deprecated”

- Ting som skal fjernes ELLER revurderes fordi de ikke er definert i MVP-en
Validation:

- RegEx (Regular Expression) skal/kan bli brukt for form validering
Testing:

- https://github.com/testing-library/jest-dom

Alle farger er definert i en fil i stil-mappen. Denne bør importeres i alle komponenter og skjerm
komponenter, og farger bør aldri settes manuelt (uten referanse til Colors).

TypeScript brukes for kvalitetssikring av komponenter.

https://react-styleguidist.js.org/docs/documenting/
https://github.com/testing-library/jest-dom

Appendix 6 - Work Time Registration

Appendix 7 - Group Contract

Group Contract - IS305

We, the group /*Todo*/, consists of the following members:

- Ole Haraldseth
- Aleksander Larsen
- Fredrik Meltveit
- Daniel Mossestad

We are to work together with the following project: “Bachelor Thesis in Information Systems”

We promise we will:

- Do assigned tasks
- Finish tasks within deadline
- Make sure work is divided equally between the group members
- Research necessary technologies and documentation needed to do assigned work

Conflicts will be resolved by discussion between the group members. If we can’t resolve the
issue, the product owner will be contacted.

Signatures:

Ole Haraldseth

Aleksander Larsen

Fredrik Meltveit

Daniel Mossestad

Appendix 8 - Gantt Chart

Appendix 9 - Example of User Story

Appendix 10 - Figma Dashboard with Sketches

Appendix 11 - Figma Prototype

Appendix 12 - Wizard A

Appendix 13 - Wizard B

Appendix 14 - Wizard C

Appendix 15 - Risk Register

Appendix 16 - Recorded Risks

Appendix 17 - Planning Poker

Appendix 18 - Folder Structure

Fil-struktur
Mapper som er relevante er market i bold, mapper som dere ikke bør gjøre endringer i (uten
diskusjon) er markert med rød

/components
/fonts
/helpers
/images
/screens
/store
/styles

/components
Components mappen holder komponenter som er brukt under skjerm komponenter, eller
komponenter som er brukt globalt.

Eksempler på komponenter: “LeftNavigation” (global), “CaseItem” (underkomponent av
CaseList), “CaseList” (tilhører CasesScreen)

/screens
Screens mappen brukes for å holde komponenter som holder en overordnet skjerm-komponent
tilknyttet en url og side i applikasjonen.

F.eks. “MessagesScreen” eller “CasesScreen”.

For at en komponent skal vises, må du importere og plassere den under skjerm komponenten
den tilhører.

Appendix 19 - React Components Guide

Funksjonsbaserte komponenter og “hooks”
Som nevnt i toppen fører bruken av funksjonsbaserte komponenter til noen endringer i metode. I
React brukes noe som er kalt “hooks”, for å få tilgang til noe av funksjonaliteten som foreligger
naturlig i Class baserte komponenter.

Dokumentasjon: https://reactjs.org/docs/hooks-intro.html

useState hook
useState hook brukes i følgende format:
const [count, setCount] = useState(0);
Her er count variabelen som holder “state” count, dvs. nummeret 0 per default. Med et call til
setCount(3) vil verdien endres til 3.

useEffect hook
useEffect er en hook som dekker funksjonaliteten til componentDidMount,
componentDidUpdate, og componentWillUnmount kombinert. Dersom du har laget
funksjonalitet som gjør at en komponent må rerendere en million ganger i sekunder, har du
sannsynligvis glemt å bruke useEffect hooken.

Brukergrensesnitt, stil
Liste
Material UI komponent: https://material-ui.com/components/lists/
Eksempel på steder hvor Liste brukes i applikasjonen: LeftNavigation, MessageList

Table
Material UI komponent: https://material-ui.com/components/tables/
Eksempel på steder hvor Table brukes i applikasjonen: CasesList

Wizard
Material UI komponent: https://material-ui.com/components/steppers/

https://reactjs.org/docs/hooks-intro.html
https://material-ui.com/components/lists/
https://material-ui.com/components/tables/
https://material-ui.com/components/steppers/

Appendix 20 - Redux Guide

Redux prosessbeskrivelse
1. (types.ts) Legg til som en del av State i state interface

a. F.eks.`selectedCaseId: number | undefined` i CasesState
2. (reducer.ts) Legg til som en del av initialState for reducer, med bestemt initial verdi

a. F.eks. `selectedCaseId: undefined` eller `selectedCaseId: 1`
3. (types.ts) Definer typer actions som skal kunne “modifisere” staten

a. F.eks. `export const SELECT_CASE = 'SELECT_CASE';`
4. (types.ts) Definer interface for action med type payload (data)

a. F.eks. `interface SelectCaseAction { … , payload: number }`
5. (types.ts) Legg til interface for action i export (med | split)

a. F.eks. `export type CasesActionTypes = … | SelectCaseAction`
6. (actions.ts) Importer ny action type (og hvis ikke importert enda, action interfaces) til

actions filen
a. `import { … , SELECT_CASE, CasesActionTypes } from './types';`

7. (actions.ts) Legg til action som skal exportes (og importeres for bruk)
a. `export function selectCase(caseId: number): CasesActionTypes {

…
}

- (reducer.ts) Importer ny action type (se 6)
- Legg til en ny “case” i switch statementen inne i den tilknyttede reducer, i tilfeller knyttet

mot den nye type action dere har lagt til
- F.eks. case SELECT_CASE:
- Returner den totale staten (...state,) og sett verdien av objektet du skal

modifisere til payload (dersom payload)
-

NB! Hvis du lager en ny reducer må du også eksportere denne til index.ts i /store, og legge den
til i rootReducer.

Tilgang til og oppdatering av state fra applikasjonen
For tilgang til state til redux store, må `useSelector` fra ‘react-redux’ importeres. For å sette en
variabel lik en state, vil format være følgende: (eksempel for caseId)
`const caseId = useSelector((state: RootState) =>
state.cases.selectedCaseId);`
For å oppdatere redux state fra applikasjonen, må `useDispatch` fra importeres fra ‘react-redux’ ,
og action eksportert i steg 7 må importeres fra actions.ts.

Appendix 21 - Branch Guide
1. Main

a. Global Features
b. Wizard Management
c. Inbox
d. Administrator

i. Branch
ii. Branch
iii. Branch

e. Case Display and Case management
i. Branch
ii. Branch
iii. Branch

f. Dashboard
i. Branch
ii. Branch
iii. Branch

Når skal jeg merge?
Du kan merge når:

- Du har fullført en eller flere tasks
- Du har fullført en eller flere user stories

Du skal merge:
- Hver fredag dersom du har fullført en eller flere tasks og/eller en eller flere user stories

Appendix 22 - Sprint Guide

Oppsett for start av sprint
1. Oppsummering
2. Skrive inn overordnet plan
3. Velge user stories å fokusere på
4. Lage tasks
5. Estimere tasks
6. Tilordne tasks
7. Oppdatere Gantt chart
8. Se kjapt igjennom dokumentene (Riskanalyse, timeliste, annet)

- Etter sprint 4: Legge til ekstra tasks/user stories dersom tasks/user stories er avhengige
av informasjon fra Sikri

- Sprint 5:
- Legge til testing
- “Fuck-around”-ing i forhold til backend
- Lage 10-20 saker for student1 og student2
- Fikse småting rundt om i applikasjonen

- Her kan det gjøres individuelle vurderinger, og pushes til en branch
spesifikt for dette

- Opprette grensesnitt for wizard template building
- Planlegg presentasjon

- “Storyline” hvor en saksbehandler håndterer en sak gjennom en Wizard
- Bruk “Ambulerende Skjenkebevilling”

- Les gjennom mal for oppsett av “Arbeidsflyt”

Oppsett for avslutning av sprint
1. Gjennomgå Azure
2. Merge
3. Sprint Review
4. Sprint Retro

Appendix 23 - Example of Unit Test

Appendix 24 - Overall Plan

Appendix 25 - Steering Committee Meeting 1

Appendix 26 - Steering Committee Meeting 2

Appendix 27 - Steering Committee Meeting 3

