

Elements Notification System
A bachelor thesis in collaboration with Sikri AS

DOKKEN, A.

HUSFLOEN, L.

STOKKELAND, K.

SØMME, B.

THEIMANN, H.

SUPERVISOR

Geir Inge Hausvik

University of Agder, 2023

Faculty of Social Sciences

Department of Information systems

Page 1 of 70

Abstract
This report documents a software development project conducted in collaboration with Sikri

during the spring semester of 2023. The objective was to implement a modern notification

system within their already existing product, Elements. With the objective of ensuring high

processes quality, the team took advantage of established project management

methodologies. The team utilized Azure DevOps as a tool for controlling and carrying out

these management processes.

Through data collection, the team gathered insights of the relevant domain and conducted a

user survey to further understand the user needs. This was crucial for the subsequent process

of specifying the system requirements. An architectural model was formed as an outcome of

utilizing established design principles and discussions with technical leaders at Sikri. The

model and system requirements were used in hands with Sikri’s proposed user interface

design as a foundation for developing the system.

With the use of technologies such as C#, TypeScript, React, and SignalR, the team developed

a highly accurate and effective system in correspondence with Sikri’s ambitions. While not

covering all the requirements to make the notification system production ready, it fulfilled the

predetermined proof of concept. By highlighting quality over quantity throughout the span of

the project, the team successfully facilitated further development.

As a result of carrying out the project, the team has built meaningful experience within

management and development. Through developing a product of high quality with the

intention of going into production, the challenges and processes have brought meaningful

learning outcomes within the field.

The final product can be viewed here.

https://youtu.be/n9HHLsP9lD8

Page 2 of 70

Preface
This report is written as a part of the bachelor’s degree in IT and information systems, for the

subject IS-304, bachelor’s thesis in information systems. Through this bachelor’s thesis and

report, the aim is to demonstrate the students’ ability to use acquired knowledge and

competence through the execution of a real project associated with information systems

(University of Agder, 2021).

Our sincere thanks to Asbjørn Nordgaard & Sikri for including us extremely well during the

project – offering a challenging project and giving the necessary help and guidance for our

team to excel at it. We especially appreciate being able to work from Sikri's offices alongside

their development teams, facilitating communication, learning and collaboration. Thanks to

everyone at the Kristiansand office for welcoming us!

We would also like to express our gratitude to all who contributed to this project. Especially

to Ammar Haddad as our primary contact and Eren Canpolat, Leif Roger Frøysaa, Tom Are

Nyland, Ingebjørg Gregersen, Caroline Andersen, and others for collaborations and

mentoring. Lastly, we would like to thank our supervisor, Geir Inge Hausvik – for valuable

feedback and advice throughout the project.

Kristiansand

16.05.23

Lars Blåsmo Husfloen Bjørnar Olsen-Hagen Sømme

Aleksander Dokken Kristoffer Stokkeland

Hermann Rødseth Theimann

Page 3 of 70

Table of Contents
1. Introduction .. 5

1.1. Definitions ... 5

1.2. Sikri ... 5

1.3. Team .. 5

1.4. Current Situation ... 6

1.5. Project.. 6

1.6. Goals and Ambitions ... 7

2. Project Management .. 7

2.1. Methodology ... 7

2.2. Definition of Quality ... 9

2.3. Process Quality .. 10

2.4. Product Quality ... 11

3. Analysis.. 12

3.1. Data Collection .. 12

3.2. System Requirements .. 13

4. Technology and Tools.. 17

4.1. Azure DevOps ... 17

4.2. Frontend .. 20

4.3. Backend ... 21

5. Architectural Design .. 23

5.1. Architecture Design Criteria ... 23

5.2. Architectural Model .. 26

5.3. Database Design .. 27

6. Project Execution ... 27

6.1. Project Start ... 28

6.2. Development ... 28

6.3. Project Close ... 36

7. Final Product .. 37

7.1. Functionality.. 37

7.2. Facilitating Further Development ... 39

8. Reflection ... 40

8.1. Process and Methods ... 40

Page 4 of 70

8.2. Product Decisions .. 44

9. Conclusion ... 47

References .. 48

Appendix .. 53

List of Figures
Figure 1: Venn diagram illustrating Scrumban (Kajal, 2021) ... 8

Figure 2: 12 Design criteria model .. 11

Figure 3: Depicts the 6th User Story.. 16

Figure 4: The Azure board for the project ... 17

Figure 5: Azure Retrospective ... 18

Figure 6: A complete run from the pipeline performing the Sonar scan 19

Figure 7: Coverage report sample .. 23

Figure 8: Architectural model .. 26

Figure 9: ER Diagram .. 27

Figure 10: Backlog for sprint 1 .. 30

Figure 11: Team Assessment in sprint 1 .. 32

Figure 12: Error feedback when hovering over notification bell ... 33

Figure 13: List of notifications .. 38

Figure 14: Settings for notifications .. 38

Figure 15: Hovering over notification bell .. 39

Figure 16: Error feedback .. 39

Figure 17: Feedback when SignalR server is down ... 39

List of Tables
Table 1: FACTOR criterion .. 14

Table 2: Prioritized design criteria. ... 24

List of Appendices
Appendix 1: Statement From Sikri .. 53

Appendix 2: Team Evaluation ... 54

Appendix 3: Group Contract .. 56

Appendix 4: Risk Analysis .. 58

Appendix 5: User Stories ... 61

Appendix 6: User Survey Form .. 64

Appendix 7: User Survey Result.. 65

Appendix 8: Definition of Done (DoD) ... 70

Page 5 of 70

1. Introduction
This report is the documentation of the management, execution, and conclusion of the

conducted project. As a part of the bachelor’s thesis, it is mandatory to collaborate with a

third-party, which is why a partnership with Sikri AS was formed. The team was tasked with

developing a notification system for Sikri’s case management system, Elements, entirely

changing the way users get notified.

The first chapter will introduce the project, while the second chapter covers the management

of the project. The third chapter pertains to the analysis conducted, whereas the fourth

presents the technologies and tools used. Architectural design will be presented in the fifth

chapter, before chapter six describes the projects execution. Chapter seven presents the final

product, while the reflection of the project comes in chapter eight. The ninth and last chapter

will conclude the project.

The following subchapters in the introduction will introduce relevant definitions, Sikri as a

company, the team, current situation, the project, as well as goals and ambitions.

1.1. Definitions

This report will expect some familiarity with the following terms and therefore offer some

quick definitions for the reader.

• Monolith: “A monolithic architecture is a traditional model of a software program,

which is built as a unified unit that is self-contained and independent from other

applications.” (Harris, u.d.).

• Micro service: “an approach to developing a single application as a suite of small

services, each running in its own process and communicating with lightweight

mechanisms, often an HTTP resource API.” (Lewis & Fowler, 2014).

• Micro frontend: “An architectural style where independently deliverable frontend

applications are composed into a greater whole” (Jackson, 2019).

• Monorepository: “A monorepo is a single repository containing multiple distinct

projects, with well-defined relationships." (Eagle, et al., 2022).

1.2. Sikri

Sikri AS is one of Norway’s leading providers within case management, document

management, and archiving. With a rich history of over three decades, Sikri has a strong

focus on fostering collaboration and innovation to help its clients achieve their goals. As the

project owner, Sikri has put aside resources for sustaining the bachelor project.

1.3. Team

The team consists of five members, all in their sixth and final semester of the bachelor’s

degree in IT and Information Systems at the University of Agder. After working together in

several previous courses, the team has developed a strong and collaborative relationship.

Page 6 of 70

Furthermore, each member possesses comprehensive knowledge of different aspects within

software development, with various areas of expertise. There was a division of primary

responsibilities, but despite this, all members were involved in the different aspects of the

project. This division specifically referred to frontend and backend. Lars and Hermann took

the main responsibility for the frontend, while Aleksander, Bjørnar, and Kristoffer had the

backend. Hermann was appointed as the team leader, but as a flat hierarchy was preferred,

most of the responsibilities ended up being shared amongst the team. The role of Scrum

Master was performed by Aleksander throughout the project.

1.4. Current Situation

Elements, Sikri's case management system, is a popular tool for handling, managing and

archiving cases in the public sector, with well over 50 000 regular users. In recent years, there

has been a growing demand for greater collaboration and case processing efficiency.

Elements has some functionality to support notifying users via mail once a day on what has

changed in a “search” or case. The users are not receiving timely notifications about

important case updates and events as they occur, leading to delays and potentially missed

deadlines. As a result, it has become apparent that the current system needs upgrading when

it comes to notifying users of significant events and case-related updates.

1.5. Project

To address the issues mentioned in the previous chapter, the team partnered with Sikri to

develop a new notification micro service and micro frontend that will seamlessly integrate

with their existing application environment. The system will offer notifications about relevant

events when they occur. Examples of such events include changes or updates to a case,

upcoming deadlines, or system announcements from Sikri. The system will exist as a part of

Elements, and Sikri will be responsible for the UI/UX design ensuring consistency,

facilitating that the project have greater focus on functionality.

From using the notification system, users will be able to stay up to date on case developments

without having to manually explore changes in the Elements UI. This will allow users to

focus on other important tasks while also ensuring that they do not miss critical updates. The

system will also have customizable settings, giving users control over events they want to be

notified about. By providing these new functionalities, the notification system aims to

improve efficiency and user experience.

The notification system will have robust security to ensure that only authorized users have

access to sensitive case information. The user interface will be intuitive and easy to navigate,

with clear and concise information presented in a user-friendly manner. The notification

system will be scalable, reliable, and integrate with existing case management tools and

systems. Clear documentation will be provided, making the handoff to Sikri’s developers

easier after project close.

Page 7 of 70

The initial scope of the project is to create a proof of concept (POC) that fulfill the criteria

specified to achieve the specified minimal viable product (MVP):

▪ Users should be able to receive notifications in the Elements UI when relevant events

occur.

▪ Users should be able to change their notification settings, such as choosing which type

of events they want to be notified about.

▪ The system should have a user-friendly interface that is easy to navigate and provides

clear and concise information.

▪ The notification system must be able to integrate with Sikri’s case management

system, Elements.

1.6. Goals and Ambitions

The overarching project goal is to facilitate our academic and professional growth while also

delivering a high-quality outcome to the partner company, Sikri. The team is deeply invested

in this project and committed to carrying out the work in a professional and rigorous manner.

Producing high-quality code that adheres to best practices and using modern methodologies

for both project management and technical excellence is a priority. Especially as this system

is planned to be used in production, it is important to be mindful of Sikri's preferences and

requirements, particularly their emphasis on quality over quantity. Therefore, the team will

make well-reasoned decisions that consider their standards and expectations, ensuring that the

final delivery meets the needs and is ready for further development and implementation.

2. Project management
Effective project management plays an important role in ensuring a successful project

process. It acts as the binding agent that holds the project together, providing the team with

realistic plans, well-defined objectives, estimates, and control (Aston, 2023). This chapter is

divided into four subchapters showcasing the different aspects of the project management.

The first subchapter outlines project methodology, while the following three will draw

attention to quality, with the aim to ensure this remains highlighted throughout the project.

2.1. Methodology

As there will always be differences between projects, there is rarely a standardised solution

on how to structure project work, but more of a process for the team to find what ensures the

best prerequisite for success (Burgan & Burgan, 2014). At the heart of agile, are open

communication, collaboration, adaptation, and trust amongst team members (Atlassian, u.d.).

Page 8 of 70

For agile management it was decided to use a combination of the Scrum framework and

Kanban method, Scrumban, as the development methodology. “Scrum is an agile project

management framework that help teams structure and manage their work through a set of

values, principles, and practices.” (Atlassian, 2018), while “Kanban is a popular framework

used to implement agile and DevOps software development.” (Atlassian, 2019).

Derived from utilizing Scrumban in prior development projects, the team found it appropriate

to use Scrum artifacts that endorse control and quality, in combination with a Kanban board.

Kanban boards are a shared space where teams can visually manage their work, and using

this will give the team a better overview and control over the work items in the project (Lynn,

u.d.). Additionally, the kanban inspired “walk the board”, introduced to the team by

Skatteetaten in an earlier project, will be used during daily scrums to easier follow up work in

progress. This approach to daily scrum entails to change the focus from the people to the

tasks on the board, focusing on work items on the kanban board going from person to person

(Chec, 2020). Using a combination of Scrum and Kanban artifacts, allowed the team to work

in an iterative and flexible way, adapting to changes as they arise and ensuring that the final

product meets the necessary quality requirements. Having such an approach was especially

important in this project as the scope was quite fluid, meaning there was a significant number

of changes to accommodate for as the project went on.

Since Sikri utilize a similar Scrumban approach to what the team have used in prior projects,

there were no problems adapting to their workflow. Working in a similar fashion to Sikri was

deemed sensible, as this would make collaboration and further development easier. The

sprints for this project were conducted in 2 week increments and there was held daily stand-

ups to keep everyone updated on the progress and bring up any issues that arose. At the start

of every sprint, the team carried out a Sprint Planning meeting to specify the goal of the

sprint and the associated tasks in which were estimated.

Figure 1: Venn diagram illustrating Scrumban (Kajal, 2021)

Page 9 of 70

Towards the end of the sprints, a Sprint Review with the Product Owner or Product Owner

representative was held for reviewal and feedback, with the intent of preventing challenges

and improving the processes. Subsequently to closing off the sprint, a retrospective was held,

further evaluating the progress, and identifying areas of improvement. The retrospective

served as an opportunity for the team to reflect on the project and its outcomes, including any

incidents or issues that occurred during the sprint. In addition, the team followed the

principles of blameless postmortem, which is a process of analysing and learning from

incidents without attributing fault to individuals (Atlassian, 2020), it focused on identifying

the root causes of any challenges and implement preventive measures. Its purpose was to

enable the team to learn from the incidents without pointing fingers or assigning blame to

individual team members. This fostered a culture of open communication, collaboration, and

trust among the team, allowing for continuous improvement and growth.

The team also worked closely with Sikri throughout the development process to effectively

prioritize and address any issues, ensuring that the system would fulfil their requirements.

Regular meetings and demos were conducted to gather feedback and make necessary

adjustments, contributing to the prevention of challenges and improvement of processes for

upcoming sprints.

2.2. Definition of Quality

Defining quality in software development can be a complex task as it depends on the distinct

requirements and expectations of the end-users and stakeholders (xbosoft, u.d.). However,

most definitions share a fundamental aspect, which is the extent to which a software product

or service satisfies these demands and anticipations. While each project may require a unique

definition of quality based on its specific context and needs, using an established guideline

can facilitate communication and collaboration among team members and stakeholders

(McKinsey & Company, 2021). Therefore, to ensure consistency in quality, the team has

chosen to use the following definition of software quality from the ISO 25010 standard as the

base for the project:

"The quality of a system is the degree to which the system satisfies the stated, and implied

needs of its various stakeholders and thus provides value" (ISO, u.d.).

This definition is a part of a comprehensive and standardized framework for assessing and

evaluating software quality, which is widely recognized and accepted in the industry (ISO,

2015). Furthermore, quality extends beyond the end-product and encompasses the techniques

and methodologies employed throughout the software's development and delivery process

(Indeed, 2022). This includes a range of activities such as planning, execution, monitoring,

and control, all of which contribute to the product’s overall quality.

In order to achieve high-quality software, it is crucial to gain a good understanding and define

the requirements and expectations of the end-users and customers (Indeed, 2023). This can be

accomplished through various methods such as conducting user research, gathering feedback

from existing customers, and analyzing industry trends and best practices. At its core, agile

Page 10 of 70

development emphasizes the need to gather just enough information to start a project,

enabling early testing to ensure value delivery while avoiding the pitfalls of overdesigning

and costly mistakes (Atlassian, 2023). Furthermore, the principles of agile development

encourage a culture of rapid iteration, embracing failure as a learning opportunity and moving

forward with continuous improvement (Agile Alliance, 2015).

“Quality is never an accident. It is always the result of intelligent effort."

- John Ruskin

2.3. Process Quality

Attaining and maintaining high process quality is crucial in software development projects

and is often referred to as quality assurance (Stanton, 2022). Achieving high process quality

requires careful consideration of the methodology and accompanying processes, ensuring that

they best align with the specific needs and goals of the project. Equally important is

considering the team and its individual members, as their capabilities and preferences can

significantly impact the effectiveness of the chosen processes. By selecting appropriate

methodology and processes that are well-suited to the project and the team, it becomes

possible to establish and maintain high process quality throughout the project's lifecycle

(Krawczyk, 2022).

Therefore, as mentioned, the team is using an agile methodology inspired by Scrum and

Kanban, which emphasizes continuous improvement and adaptation, allowing the team to

work in short sprints, communicate and collaborate effectively, and address issues and risks

promptly. This approach has been adjusted to fit the team and its members, ensuring that it

fits the specific needs.

In addition to the traditional ceremonies associated with the chosen methodology, the team

has implemented processes to complement them, ensuring that the work adheres to the

definition of done (DoD), which is found in Appendix 8. These processes include code

reviews, acceptance criteria, pull requests, and testing. A clear DoD is essential for any

project as it establishes the criteria that must be met to consider a task complete. By having a

well-defined DoD, the team can ensure that all aspects of the project are completed to a

satisfactory level, minimizing the risk of rework, and improving overall efficiency

(ProductPlan, 2021).

The team is working at the office roughly three times a week, which facilitates easy access to

Sikri’s resources and enables the team to work more closely together. As a result of this, pair

programming has been utilized frequently. This has been shown to result in higher code

quality, faster problem-solving, and improved knowledge-sharing among team members

(Przystalski, 2021). Additionally, team assessment in Azure DevOps is used at the end of

each sprint, allowing the team to reflect on their work and assess the team’s health,

performance and identify areas for improvement. Based on this, the team can make the

necessary adjustments to ensure continuous improvement.

Page 11 of 70

The use of appropriate tools and communication channels is also critical to achieving high

process quality (Nath, 2023). Thus, the team utilizes Teams and physical meetings as needed

for communication, while Azure DevOps is used for project management. The team also has

a dedicated channel in Sikri's Teams for storing shared documents in the cloud.

High process quality often leads to high product quality, as a well-defined and executed

process can ensure that requirements are clearly understood, risks are identified and managed,

and defects are detected and resolved early (Beck, et al., 2001). By prioritizing process

quality, it is possible to ensure that the resulting product meets the specific needs and

requirements of the end-users and stakeholders, and that it is reliable, maintainable, and

secure.

2.4. Product Quality

Product quality is arguably the most important aspect of software development, as it directly

affects the user experience and thus the success of the project. To ensure high quality in the

product, the use of established models is often a reliable approach to improve the outcome

(Sommerville, 2016, pp. 657-663). Therefore, ISO 25010’s product quality model was

initially chosen. This model defines eight characteristics of product quality: functionality,

reliability, usability, efficiency, maintainability, portability, compatibility, and security (ISO,

u.d.). On further inspection we found this to be very similar to the 12-design criteria model

proposed in Object Oriented Analysis & Design by Lars Mathiassen (Mathiassen, Munk-

Madsen, Nielsen, & Stage, 2018, ss. 179-184). As the team were familiar with this model

from previous projects, it was decided to utilize this instead.

It is important to note that while it is ideal to fulfill all twelve characteristics, it is usually not

possible to achieve this. Therefore, one should prioritize the characteristics that are most

important based on the needs and expectations of the end-users and stakeholders. Figure 2

illustrates the 12 criteria while the prioritization and reasoning for it can be found in chapter

5.1 Architecture design criteria.

In the design and development of the notification system, specific requirements and

preferences of the target audience will be considered, as well as the resources and constraints

of the project. This will help determine which product quality characteristics to prioritize in

delivering a product that meets the highest possible standards.

Figure 2: 12 Design criteria model

Page 12 of 70

In summary, the team strives to achieve high product quality using the 12-design criteria

model, prioritizing those that are most important for the end-users and stakeholders. This

approach will help in the delivery of a notification system that is not only reliable, secure, and

efficient, but also adaptable to the evolving needs of the users.

3. Analysis
System analysis plays a vital role in software development as it lays the foundation for the

rest of the development process. It involves defining software requirements and specifications

by gathering and assessing data related to the system and the domain it resides in. System

analysis is the first and arguably the most important step in software development, as any

inaccuracies can have significant implications for the project's success (Roper, 2021). As

Sikri already had specified a lot of the systems requirements and specifications, the team’s

responsibility for analysis in this project was reduced.

3.1. Data Collection

Gaining understanding of the needs of the system and the domain in which it would operate

was essential to develop requirements and specifications of the system. Considering the

obtained insights from meetings and discussions with Sikri representatives, there was still a

necessity for greater understanding of the current situation and the end user needs. The

following subchapters delve into the two data collection processes conducted in this project.

3.1.1. Domain Knowledge Gathering

Success in software development is not only dependent on an understanding of technology

but also on how the real-world functions. This understanding of a particular industry or field

is often referred to as domain knowledge (Carter, 2023). A common way of gathering this

knowledge is through talks with experts within the field, and this investment can lead to more

qualitative solutions and better communication with stakeholders (Carter, 2023). Elements

exist in a domain that the team were unfamiliar with from both a technical and non-technical

standpoint. Therefore, the need to gather data was apparent, making discussions with experts

in the field an optimal process. Since the notification system was to implement both front-end

and back-end functionality, we scheduled meetings with employees representing these areas.

Starting off by conducting a meeting with the UX developed familiarity with the current

Elements UI, its core functionality, and use cases relevant to the project. The outcome from

this interaction included a fundamental understanding of Sikri’s expectations and the end user

needs. Subsequent of this was a technical meeting with tech leads and developers

representing the whole tech stack. Discussions resulted in a greater understanding of what the

system would be responsible for, from several perspectives.

The domain knowledge gathering phase did not reside within a fixed period, as this was

performed in an agile fashion. As time went on, more insights and knowledge of end user

Page 13 of 70

needs were obtained. This directly affected the iterative activities and changes of system

requirements.

3.1.2. User Survey

In the purpose of gathering knowledge of the customers perspective, there were agreement

with Sikri that a user survey was adequate. A user survey is a tool to obtain in-depth insights

from customers (Userpilot, 2023). Utilizing this could uncover new insights and confirm the

internal perceptions.

The team independently created a drafted document of questions, which then was handed

over to the UX team for feedback. Conversations went back and forth until a final proposal

was formed. As of that point in time, the team’s responsibilities for the survey ended, as there

are organizational regulations prohibiting direct customer interaction. Following this, the UX

team and marketing department at Sikri further worked on finalizing the survey, which can be

found in Appendix 6. Unfortunately, this process became more time consuming than

anticipated and it was not distributed before the 8th of March.

The survey was made available online for the customers, with more and more responses

arriving by the end of the project. As most of the results came in towards the end of the

project the role it played would have been minimal. Therefore, no time was invested in

analyzing the findings, but these will be useful for further development. As of May 11th, there

were a total of 35 respondents, which are presented in Appendix 7 with the exclusion of the

optional textual feedback.

3.2. System Requirements

The objective of this section was to conduct assessment of the previously collected data to

determine requirements of the notification system. These substantiated the development

process and were fundamental for delivering a product of quality. Resulting from this was a

prioritized user story document, and a thoroughly processed system definition.

3.2.1. System Definition

A system definition is “a concise description of a computerized system expressed in natural

language” (Mathiassen et.al., 2018, s. 24). An essential part of discovering the requirements

of the system was to obtain an overall abstract description. In addition to providing common

understanding and lay ground for the team’s further analytical initiatives, the definition will

also provide important and understandable information to stakeholders. The goal was to keep

it simple and understandable, enabling all relevant parties to comprehend it despite their

technical knowledge.

The process of developing the definition can include various activities. One useful method is

called FACTOR criterion. Within this resides six elements: functionality, application domain,

conditions, technology, objects, and responsibility. Exploring what satisfies each criterion in

the chosen system, can then be considered when creating the system definition (Mathiassen,

Page 14 of 70

Munk-Madsen, Nielsen, & Stage, 2018, s. 40). Table 1 was the results from determining the

FACTOR criterion of our system.

Table 1: FACTOR criterion

The contents of each criterion were utilized when creating the system definition. To ensure

the quality of the definition, the team thoroughly examined that the discoveries from

FACTOR were present. Both the system definition and FACTOR were iterated back and

forth, to ensure that both were as precise as possible. Following is the final system definition:

“A notifications microservice for Sikri’s case management system Elements. The system will

be developed in Visual Studio using C#, .NET, and SignalR for the backend, and React and

TypeScript for the micro-frontend. The system will integrate with Sikri's existing application

environment and provide several functionalities that will improve communication between

the services and users.

The goal of this system is to improve the functionality of Elements and enhance the user

experience for regular and occasional users in the public sector. With this system in place,

users will be able to stay informed about the cases they are subscribed to, and administrators

will be able to ensure that critical information is shared with the right people at the right

time.”

The system definition was repeatedly revisited throughout the project to ensure correctness

and functioned as a base line for developing the user stories presented in the following

section.

3.2.2. User Stories

The user stories were created in consideration of preliminary analysis efforts, to facilitate

development processes. The entire team had great familiarity with the concept beforehand,

unanimously agreeing on its positive effect on development projects. User stories are general

explanations of features, written in a natural, non-technical language. They should emphasize

Page 15 of 70

the end user’s perspective, making developers oriented on the purpose of the implementation

(Rehkopf, User stories with examples and a template, u.d.).

To benefit a concise and repetitive format, a decision was made to follow the format: as a

(who), I want to (what), so that (why). This is recognized as the “Connextra format” (Agile

Alliance, u.d.) and justified by the team’s positive experience, in addition to its wide

acknowledgement. Acceptance criteria were supplied in correspondence with the individual

user stories as they were brought into the Product Backlog. These criteria are “the conditions

that a software product must meet to be accepted by a user, customer, or other system”

(Altexsoft, 2021). The focus of these was decided to aim at the end users of the system and

was reasoned to increase understanding of the implementations both for the team and the

stakeholders. The team chose to format the acceptance criteria with “Given - When - Then”,

to provide an end user perspective of obtaining a fulfilled implementation. All the user stories

were prioritized using the familiar MoSCoW prioritization. This method includes four

categories of initiatives: must-have, should-have, could-have, and won’t have. Beneficial of

conduction is sustaining the development work in prioritizing tasks (ProductPlan, u.d.). The

user stories were further arranged in importance in sequential, numeric order.

The user stories were updated multiple times to stay tuned with the increasing knowledge of

the team. Stakeholders, primarily represented through developers and the UX team at Sikri,

were included in prioritizations with the purpose of keeping goals and objectives clear. The

final list (depicted in Appendix 5) contained a total of 40 user stories. These were initially

composed of an overall priority number, a MoSCoW priority, and the user story itself. The

acceptance criteria and additional descriptions were documented in feature items created in

Azure DevOps. A total of 19 user stories, comprising of almost all the defined must-haves,

were introduced to the Product Backlog. Figure 3 shows an example of a user story.

Page 16 of 70

 Figure 3: Depicts the 6th User Story

Page 17 of 70

4. Technology and tools
This chapter will explain the tools, programming languages, and frameworks that were used

to create the system. The reoccurring reasoning for choosing technologies for this project is

the use of the same tech stack as Sikri. The main reason being that the product will be further

developed and used by Sikri, thus facilitating the best possible handover. Unless the team is

in a situation where the advantage of changing technology exceeds the disadvantages, this

will take precedence.

4.1. Azure DevOps

The Product Owner required the use of Azure DevOps as a project management tool, as this

is where all of Sikri developers operate. All repositories, code, and management work that

Sikri does are contained here, making it easier for the team to access internal references in

one place. Azure DevOps increases project control by providing an overview of remaining

work, progress, and both assigned and unassigned tasks (Microsoft, 2022).

4.1.1. Azure Boards

Azure Boards is a tool that helps to keep track of the product and Sprint Backlog by allowing

team members to organize tasks in a Kanban board based on their progress (Azure Boards,

u.d.). The Azure board for managing the project can be viewed in Figure 4. For better

organization, tasks are categorized into three swimlanes: front-end, back-end, and meta. By

using user stories to create PBIs, team members can write acceptance criteria, descriptions

and attach relevant documentation on respective tasks.

Figure 4: The Azure board for the project

Page 18 of 70

4.1.2. Retrospective and Team Assessment

Two extensions of Azure DevOps used throughout this project were the Sprint Retrospective

(Figure 5) and Team Assessment. The retrospective allowed the team to assess and document

the successes and downfalls of each sprint, facilitating changes and improvements in future

sprints. Meanwhile, the team assessment feature provides a platform for the team to reflect on

their performance during a sprint or project, helping them to analyze and assess their

performance and identify areas where they need to improve. Team assessment allows teams

to evaluate themselves against specific metrics or criteria, such as team velocity, sprint

burndown, code quality, and team morale. Overall, the purpose of team assessment is to help

teams identify areas for improvement, increase team performance, build stronger teams, and

improve the quality of work produced, leading to greater efficiency and effectiveness

(CMOE, u.d.) (Indeed Editorial Team, 2023).

4.1.3. Git Version Control

In addition to facilitating certain Scrum artifacts, Azure DevOps offers a Git version control

system. Version control is the practice of managing and tracking changes to software code

over time, aiding development teams in working faster and smarter (Atlassian, u.d.). Using

the version control offered by Azure, code was linked to their respective tasks, increasing the

team's control over completed features. There were two main repositories relevant to the

project: one for the front-end and another for the backend. The team had a repository solely

for the project's back-end, using feature branches that merge directly into the main branch

using pull requests. The front-end repository was shared with the rest of the developers at

Sikri who are working on establishing a new user interface for Elements. This makes version

control even more crucial. Similar to the backend, feature branches were used for the

frontend, but instead of merging into the main branch, the team had a separate branch

Figure 5: Azure Retrospective

Page 19 of 70

functioning as the main of this project. The use of version control is an important measure

taken to maintain quality-assured code throughout the project (Atlassian, u.d.).

4.1.4. Azure Pipelines

Azure Pipelines was an important tool in the development process. It is a cloud-based service

provided by Azure DevOps and offers continuous integration and continuous delivery

(CI/CD) capabilities that can automate the build, testing, and deployment processes of an

application (Microsoft, 2023). During development there was used two different CI pipelines

for different stages to ensure higher code-quality throughout the project:

1. The first pipeline is triggered on every commit/push to a branch in Azure DevOps.

Once activated, it runs several tasks. Firstly, it builds the solution and validates that

the updated codebase is still buildable. Secondly, the CI pipeline runs all unit tests to

confirm that the existing functionality works and that new features display the

intended behavior. The last step is to publish a report detailing the code coverage of

the branch. This code coverage report serves as a measure of how much of the

codebase the unit tests cover.

2. The second pipeline is activated on every pull request into the main branch. Its

responsibility is to perform static code analysis using SonarCloud. Static code

analysis is a method of examining the source code before a program is run. By

integrating SonarCloud, the team can detect potential bugs, vulnerabilities, and code

smells in the pull requests before they are merged into the main branch as shown in

figure 6. This automated process helps us to maintain high code quality by helping us

reduce technical debt and mitigate potential security issues.

Figure 6: A complete run from the pipeline performing the Sonar scan

Page 20 of 70

4.2. Frontend

In this chapter, the tools and technologies used in developing the micro frontend are

introduced, namely TypeScript, React, Material UI, and SignalR. Each technology or tool is

briefly described, with an explanation of why it was used and how it influenced the project.

4.2.1. Language and Framework

TypeScript is a programming language that is based on JavaScript and has strict syntax rules

(Agrawal, 2022). It provides several benefits, such as improved readability, cleaner code, and

more intuitive programming by precisely defining the data type that a variable can hold.

Although the team had no prior experience with TypeScript, its similarity and the teams prior

experience with JavaScript made it manageable for the team to learn and use effectively. To

put it simple, Typescript is a version of JavaScript with extra features (Simplilearn, 2023).

Similarly, React is a popular JavaScript library that is widely used for building user

interfaces (Deshpande, 2023). Although based on JavaScript, it is also possible to use with

TypeScript (Simplilearn, 2023), which was done in this project. It offers reusable UI

components, manages component state, and breaks down the interface for more efficient

development. In addition, React ensures that the user interface remains fast and responsive

even when handling large amounts of data or complex interactions. The team had limited

experience with React, only having taken some online courses, as well as prior knowledge of

JavaScript, the foundation of the library. As a result, the adaptation of React was manageable.

Material UI is a React library with pre-built, customizable UI components based on Google's

Material Design guidelines (MUI, u.d.). It simplifies development, reduces time, and

increases productivity, while ensuring a consistent and professional look. Its modular

components enable creating complex interfaces easily (Sirotka, 2022). Although the team had

no prior experience with this library, it was found to be easy to use, thanks to its excellent

documentation. Material UI was particularly helpful in creating components that matched

Sikri’s existing front-end theme, as well as removing the need for building common

components from scratch.

SignalR is a real-time communication library that simplifies the implementation of real-time

functionality in web applications (Fletcher, 2020). It enables communication between clients

and servers through an API for sending and receiving messages. This makes it ideal for

adding real-time functionality and notifications to web applications, resulting in more

responsive and engaging user experiences. Additionally, SignalR is highly scalable, making it

suitable for handling large volumes of traffic. Using SignalR allowed updating users'

notifications in real-time, resulting in increased usability and responsiveness (Microsoft,

2020). Although none of the team members had prior experience with SignalR, existing

JavaScript knowledge simplified its implementation on the client-side.

When building a notification-related system, these technologies can be combined to create a

powerful front-end stack. React and Material UI can be used to create a visually appealing

and dynamic UI for managing notifications, while TypeScript ensures code robustness and

maintainability. SignalR can be used to push new notifications to the front-end in real-time,

Page 21 of 70

making it responsive and improving the overall user experience. In summary, combining

React, TypeScript, Material UI, and SignalR enhances the quality and user experience of a

web application, making it more dynamic, responsive, and efficient.

4.2.2. Testing Frontend

In chapter 3.2, the system requirements were outlined in the form of user stories and a system

definition. The requirements define what is expected of the product and its functionality, but

how can one determine if they have been met?

“Testing is the process of evaluating a system or its component(s) with the intent to find

whether it satisfies the specified requirements or not.” (Toturialspoint, u.d.). Furthermore,

testing can reduce costs, improve a systems reliability and overall quality, increasing

customer satisfaction (IBM, 2016). There are diverse types of software tests, that each have

their own purpose.

As mentioned, decisions were made so that the system would adhere to Sikri’s standards.

During development there were little focus on testing on the front-end side, where only

manual testing was done. The team recognized the importance of testing and wanted to stray

away from Sikri’s approach by adding unit tests. An attempt at this was made, but as there

were no established testing standards or existing tests to draw inspiration from, this turned

out to be much more time-consuming than expected. As a result, the team ended up going for

the same approach as Sikri utilizing manual testing to ensure fulfillment of the established

requirements.

4.3. Backend

In the following subchapters, the technologies employed in development of the backend are

discussed, with the programming language and development framework, database, and

testing frameworks being highlighted.

4.3.1. Language and Framework

C# is an object-oriented programming language developed by Microsoft and commonly used

to develop applications and services within the .NET framework (Microsoft, 2023). Being a

strongly typed language, it enables developers to write cleaner, more maintainable, and

intuitive code, with precisely defined variable data types (Microsoft, 2022). C# also supports

type inference, which enhances code readability and maintainability. Type transparency

ensures the correct data is passed between components and functions, resulting in fewer bugs

and faster error detection.

C# shares similarities with Java, which is the programming language that the team had the

most experience and knowledge of. Additionally, a couple of the team members had used C#

in an earlier project, making the transition easier.

Page 22 of 70

.NET is a developer platform made by Microsoft that provides a range of tools and resources

for building scalable, secure, and high-performing applications (.NET architecture, 2023). It

includes the runtime environment, libraries, and tools needed for building, deploying, and

managing applications and services. ASP.NET is a web application framework within the

.NET ecosystem that allows developers to build web applications, web services, and APIs

using .NET languages like C# (Microsoft, u.d.). With its modular architecture, ASP.NET

provides flexibility and robust security features for modern web applications. The

combination of flexibility, security, and performance of both .NET and ASP.NET provides a

powerful framework for building backend systems.

While only one team member had prior experience with ASP.NET, a few had experience

with .NET, making it manageable for the team to learn and use effectively. Together, these

technologies form a cohesive ecosystem for creating web-based solutions on various

platforms.

MassTransit-transport is a messaging framework for .NET applications that simplifies

building distributed systems (MassTransit, u.d.). It offers a range of messaging patterns and

features, such as pub/sub and message routing, enabling developers to create scalable and

maintainable messaging applications. MassTransit-transport promotes separation of concerns

and easy integration with other technologies. The framework supports multiple transport

protocols and messaging patterns, providing built-in features like message serialization and

error handling. For the project, MassTransit was primarily used for Azure Service Bus and

RabbitMQ, which are both messaging services (Yousuf, 2022). RabbitMQ was used for local

testing of the system, while Azure Service Bus is what Elements are using, and what the final

product will have to connect to.

4.3.2. Database

Microsoft SQL Server (MSSQL) is a relational database management system for building

applications (TutorialPoint, u.d.). It integrates well with other Microsoft technologies, such as

C#, .NET and ASP.NET, providing developers with a comprehensive set of tools for building

high-performance data-driven applications (Microsoft, 2023). By providing a secure and

reliable data store, SQL Server ensures that applications are scalable, maintainable, and

performant.

Entity Framework Core (EF) is a popular object-relational mapper that allows developers to

use C# objects for interacting with the database and removes the need for writing much of the

code required manually (Entity Framework Core, 2021).

The team had limited experience with both technologies but regarded the risks as limited.

MSSQL is the database system primarily in use by Sikri allowing for easy help and potential

integration. EF is a bit more familiar and allowed the team to concentrate on non-database

functionality.

Page 23 of 70

4.3.3. Testing Backend

xUnit is a widely used testing framework for .NET applications that enables developers to

write robust and maintainable tests (Microsoft, 2023). It provides an easy way to define test

methods, assertions, and fixtures, ensuring the correctness of the code (Sheth, 2021). This

framework was chosen as it is used by Sikri, and some team-members had experience with it.

xUnit was used to develop unit tests primarily of business logic. To generate test coverage

reports (Figure 7) of the automated tests, the Grunt.js task-runner was used. This report was

used to ensure sufficient testing of business logic.

Figure 7: Coverage report sample

Postman API is a popular platform for API development that simplifies designing, testing,

and documenting APIs (Postman, u.d.). Developers can easily collaborate on development

projects and create clear and concise API documentation. With Postman API, the API

development process is accelerated, ensuring the quality and functionality of the final

product. The team had prior experience using this API, and in this project, Postman was used

to quickly test different API calls instead of running the entire application.

5. Architectural Design
The creation of a software architecture is fundamental in the development of any software

system. It serves as the base for understanding and addressing the essential requirements for

the system being developed (Martin, 2018). This chapter will present the architecture of the

system where it introduces and prioritizes design criteria for the architecture, presents a high-

level model of the architecture and dives a bit into the database design.

5.1. Architecture Design Criteria

There are numerous design concepts that can be applied to systems development. Following a

set of well-established criteria when creating a system design allows the team to stand on the

shoulders of other professionals in the field and communicate in a common language. As

mentioned in chapter 2.4 Product Quality, a list of 12 criteria specifically for design of the

system's architecture was selected, reasoned by the team’s previous experience.

When prioritizing the different criteria, the team chose to base it on the amount of time that

will be spent on each criterion and not its overall importance to the whole project. This

choice was made to keep the criteria as useful as possible for the team and avoid spending

time on tasks Sikri already had solved or would need to solve. The prioritization was done

Page 24 of 70

based on the importance expressed from Sikri, their preferred focus for the project, and

previous analysis. Listed in Feil! Fant ikke referansekilden.2 are the prioritized criteria.

The following subchapters dive deeper into the different criteria giving reasoning behind the

prioritization, with examples of how they have been worked into both design and practice. As

the importance of the criteria decreases so does the level of detail, putting emphasis on the

once that played a vital role in this project.

5.1.1. Very Important

Efficient: In a high traffic microservice architecture, which Elements is built upon, it is

important to make sure the service provided is efficient in order to ensure the overall system

performs well and can handle the scale of the user base. A high level of efficiency can also

help reduce operational costs for the company, as well as improving the user experience.

In practice, this has primarily meant being careful of the number of requests and data flow

from this part of the system to other services and within itself. The background service was

designed to get most information pushed to it from other services and store what is relevant

for its functoriality. Database tables expected to be used in logic are lightweight and easy to

access by indexed keys. The micro frontend balances correctness of information presented to

users and request-rate.

Maintainable, Testable, Flexible: All these criteria are very important based on the

requirements from Sikri, clarifying that the code should be of such a quality that they easily

could take over the development of the system when the project is done. They have stressed

that writing a small amount of high-quality code is preferable over creating a cluttered

codebase with several unfinished or low-quality features.

Criteria Very important Important Less important Irrelevant Easily fulfilled

Usable x

Secure x

Efficient x

Correct x

Reliable x

Maintainable x

Testable x

Flexible x

Comprehensible x

Reusable x

Portable x

Interoperable x

Table 2: Prioritized design criteria.

Page 25 of 70

The service utilizes dependency injection and familiar patterns such as repository-service to

strengthen all of these. Further, classes implementing business logic are largely covered by

unit tests. A primary goal when it comes to flexibility has been to facilitate ease of adding

new notification types and expand functionality around them.

Interoperable: Interoperability in the notification service is important because it allows the

service to easily integrate with other components of the microservice architecture. Our

system interacts with other services for configuration, logging, and authentication,

communicates with other services via event queues, and will likely need to look-up some data

in shared data storage. The repository pattern was implemented partly because the database

might be exchanged with a service owning the database in the future.

5.1.2. Important

Correct: When it comes to the fulfillment of requirements or correctness, Sikri has given

specific requirements to how the system should be and that these were important to follow,

especially on the backend. On the front-end, Sikri gave the team more room to try new

designs as they were responsible for providing high-fidelity mock-ups as they are developed

for the overall design.

Reliable: A reliable system ensures that notifications are delivered in an accurate manner,

and that the service is available and functioning as expected. For example, if a user relies on

notifications to receive important updates or messages, a reliable service can help to ensure

that they never miss an important notification. The reason this criterion is not a “very

important” one is because Sikri already has most of the infrastructure in place to make sure

that the correct users would get the right notification and therefore not expose any sensitive

information.

Comprehensible: It's important for a notification service to be easy to comprehend for future

developers because this can help to ensure it becomes a long-term success as well as making

the maintenance of the system easier. If a notification system is difficult to understand or

modify, it can be a major obstacle to future development and improvement efforts.

Reusable: Adhering to Sikri’s requirements, the notification systems micro frontend should

be possible to reuse in different applications. Despite this, it was clear that the focus should

be held towards first implementation in the new Elements UI, making this of lower

consideration in the project scope. As this is a micro frontend it should be easy to reuse.

5.1.3. Less Important

Usable: Considering the project as a whole, usability could be in the “very important”

category. When it comes to the time that will be spent towards this it is not as important,

mainly since the UX team have already proposed a solution based on data and their

experience. The team would therefore only focus on implementing their suggestions.

Page 26 of 70

Portable: The system will primarily be run in virtualized Linux containers in Azure, if

applicable the other technical platforms will also rely on virtualized containers.

5.1.4. Easily Fulfilled

Secure: Since the system that is being developed will exist inside Sikri’s Elements, the

security will not be a major concern since it will use authentication and authorization

provided by them. The focus in development has been to avoid demonstrably unsecure

practices.

5.2. Architectural Model

To be able to comprehend the notification services placement and intended data flow in the

greater system of Elements, flowcharts and models like the one presented in Figure 8 have

been frequently utilized. These have been developed together with tech leads and been used

to have a frame of reference in discussions. Within these discussions around technical

solutions, the design criteria described in the previous section were carefully considered to

strike the best balance. For instance, the architectural model highlights the interoperability of

the system, with the NotificationHub service integrated with other services.

5.2.1. Example Flow of a Notification

A Service sends an occurred event through the service bus. NotificationHub picks up the

event and checks the contents of the event against the users’ settings and subscriptions in the

Database. A notification is persisted for each applicable user, and a message is sent via

service bus to SignalR Server. The SignalR Server then notifies all connected clients of said

users. The client then sends a request to the API within NotificationHub. When the user

Other service – Any microservice in the

Sikri system needing to notify user(s).

NotificationHub – Responsible for

notifications, delivering them via REST-API,

and delegating any other delivery paths.

Database – Database for the

NotificationHub service. Persists data.

SignalR Server – Responsible for push

communication to clients.

Notification micro frontend – Displaying

and interacting with notifications, settings,

and subscriptions.

Elements UI – Web app that the users see

and use – made up of several microfront-

ends.

Figure 8: Architectural model

Page 27 of 70

marks a notification as read, the client makes that call to the NotificationHub API to store

this change in the Database, while the client informs other clients via SignalR Server.

For the efficiency design criteria SignalR Server allows us to get information about new

notifications pushed from the server side to the clients instead of sending frequent requests

from the clients to check if there are new notifications.

5.3. Database Design

Sikri’s current database NCore can be described as a monolith, currently moving towards a

modular monolith design. Integrating the notification systems database into the current

iteration of NCore would add unnecessary complexity. Therefore, it was decided to create a

separate database related to the NotificationHub micro service with clear contracts. From

early on, it was clear that this database would likely be replaced. As a result of this, the

database development was not a major focus in the project. The final design of the database,

after being iteratively updated, can be viewed in an ER diagram presented in Figure 9. Note

that Users is a table that only contains what is currently relevant for this project about the

users, authentication, and more details are stored elsewhere. Further, the Notifications table

would likely be iterated on more when introducing localization of notification content.

Figure 9: ER Diagram

6. Project Execution
This chapter will outline the project's progression throughout the semester. It will start with

the opening phase, before outlining the development in the seven sprints and at the end wrap

up talking about the closing stage. This should give a simple, clear view of the project from

start to finish. It is worth noting that while there is some reasoning for important choices in

this section, the most important decisions are covered in depth in chapter 8 Reflection.

Page 28 of 70

6.1. Project Start

The project started in earnest 12th January with a start-up meeting with several Sikri

employees. Prior to this, only some cursory information about the project had been shared at

the end of the previous academic term. At this meeting the project was introduced and

discussed in greater detail together with some of the employees the team would collaborate

with. Afterwards, the team discussed how it should organize itself, landing daily stand-up

times, primary working days (Monday, Thursday & Friday), Scrum Master, and much

previously discussed under the Methodology chapter. A second meeting with Sikri featured a

small walkthrough of the Elements program, an exchange of domain knowledge, and

discussion about questions for a user survey.

Over the following week, the team made a system definition, project description, and several

user stories. The user stories were discussed with Sikri before being prioritized. The team

also made a project plan, performed a risk analysis (Appendix 4) for the project, and signed a

group contract (Appendix 3). Furthermore, the team started investigating and drafting the

software architecture and an initial database schema.

On the 18th of January, a meeting was held with the project owner, discussing the scope of the

project with the team presenting their current progress, and the way forward was agreed on.

From this point forward, a representative of the project owner was appointed, and a meeting

with developers was planned to discuss the architecture. While awaiting clarifications and

access from Sikri, the team decided to start getting familiar with C# and technology that the

project would require. The team worked individually on SignalR projects from the 19th till the

23rd. The first sprint was supposed to start on the 23rd but as this was postponed to the 26th,

the team instead spent the day having demos of the individual projects to support communal

learning.

6.2. Development

The following subchapters will dive into the project’s sprints, except for the pre-sprint which

was covered in the “Project start” chapter above. The first sprint will cover a lot of the

artifacts used each sprint in much more detail compared to the rest. The reason for this is to

avoid repetition by only discussing changes or additions of artifacts in the following sprints

where these occur.

6.2.1. Sprint 1 (26.01 – 03.02)

Despite the team's initial plan to begin their first sprint on the 23rd of January, it was decided

to delay the Sprint Planning until the 26th due to what felt like a lack of information on some

of the project’s aspects. The reason being two scheduled meetings with Sikri employees on

the 26th addressing this. The first meeting was regarding the architecture of the microservice,

where the team together with a tech lead and a couple developers from Sikri created a draft.

Having a solid architecture is important but meeting the customer’s demands and creating a

good user experience starts and ends with the users. Therefore, the second meeting was with

Page 29 of 70

the UX-team where the front-end’s behavior, contents, and overall scope was discussed. As

mentioned earlier in the report, Sikri would be responsible for the design, giving the team

more time to focus on the development of the system. During both meetings, thoughts and

ideas got traded and discussed, removing uncertainties as well as creating a more uniformed

view of the project.

With this improved context and domain knowledge, the team held the first official Sprint

Planning of the project. The Sprint Planning started with selecting user stories and if

necessary, breaking them into smaller tasks to create Product Backlog items (PBIs). The user

stories for the sprint were chosen based on the existing MoSCoW prioritization, as well as

other factors that impacted the development and completion of the stories/PBIs in the current

sprint. In this sprint, it was chosen user stories that from a coding standpoint created a solid

foundation and a good starting point for further development. After debating if the right

amount of PBIs were created and added to the sprint backlog, tasks were self-assigned and

new tasks were picked from the board when a team member finished a PBI. Daily standups

were held on the days the team worked on the bachelor’s project, which normally was

Mondays, Thursdays, and Fridays.

The second week of the sprint started with a meeting with the project owner representative

and two other front-end developers. Here the team was mainly introduced to the mono

repository structure of Sikri’s new Elements UI implementation, where the notification micro

frontend would reside. The next day, permissions for the necessary repositories were sorted

and the team started writing code for both the front- and backend parts of the system. It made

sense for the micro frontend to “live” in the existing mono repository, while an entirely new

repository was created for the backend service. To not interfere with Sikri developers’

workflow, it was decided that a “students_main” branch would be created in the mono

repository so that approval from their side was not needed on every pull request (PR).

As the notification micro frontend was being set up, the team encountered some initial

challenges with the code. Despite it being configured and structured in the same way as the

existing ones, modifications made to the code were not reflected in the user interface. All the

micro frontends were hosted in the cloud and connected through a shell micro frontend.

Running all of them locally was computationally heavy and time consuming, so only the

specified or affected ones were spun up. However, due to the notification micro frontend’s

direct use in the shell micro frontend, that differed from the existing ones, the environment

variables needed to be adjusted. The problem was solved by running the shell micro frontend

locally without using their deployed cloud instance.

Page 30 of 70

During the sprint, the team completed all the PBIs (Figure 10) added during the Sprint

Planning and got started on an additional three new ones, that were added towards the end of

the sprint. This meant the team now had a working micro frontend, that consisted of a bell

icon with a popover where a list of notifications got displayed when clicking it. A database

schema was also created together with a docker image running a Microsoft SQL Server

database. The tables were then populated with simple test data. Further on the backend side,

an implementation utilizing Microsoft entity framework for communicating with the database

and a controller for retrieving all the notifications were developed. Since there was no

connection between the front- and backend at that point in time, Postman was used for testing

the backend endpoints. The three PBIs that were added at the end of the period did not get

completed during this sprint, thus the functionality they included will be covered in the next

chapter.

On the last day of the sprint, both a review with a demo and a retrospective were held with

the project owner representative present. By continuously consulting and getting feedback

from Sikri, the team were able to ensure a high degree of correctness, which was deemed

important as one of the design criteria in chapter 5.1 Architecture Design Criteria. It was

decided to use the Azure DevOps built in retrospective functionality, evaluating the progress,

and identifying areas for improvement. The retrospective identified several positives,

including productive meetings with Sikri employees, good development progress and good

communication both within and out of the team. However, there were also points to improve,

including spending too much time on configuration, created tasks being too small, waiting for

permissions, and a need for a better daily stand-up routine. Overall, the retrospective

provided valuable insights for future sprints.

Figure 10: Backlog for sprint 1

Page 31 of 70

6.2.2. Sprint 2 (06.02 – 17.02)

To improve the Sprint Planning process from the previous sprint, estimation was introduced.

This made it easier to ensure that the PBIs were not too large as well as selecting the right

amount of PBIs to take on, based on the number of hours the team had at its disposal. Using

the built in estimation tool offered in Azure DevOps, the PBIs were estimated using effort

represented by Fibonacci numbers in the same way teams at Sikri does it. Because of

uncertainty regarding the way forward, especially on the frontend side, the initial Sprint

Planning was limited. Luckily this was resolved quickly, and a sprint replanning was held on

the first Friday of the sprint, filling up the board with enough PBIs for the rest of the period.

As a measurement to improve the daily standups from the previous sprint, “walk the board”

was added to the ceremony.

During the previous sprint, a solid foundation for both the front- and backend was achieved,

but as they stood, they could not communicate with each other. After connecting these two,

additional functionality such as sorting between all, and unread notifications was

implemented. Additionally, it was now possible to toggle between read and unread state on

individual notifications. The Elements UI is built to support four different languages; English,

Norwegian bokmål and nynorsk, and Swedish, so translations for these were also added. To

receive notifications in real time, a SignalR client was developed with a connected SignalR

hub in the backend repository. The events that the notification service will send notifications

about occur in other services and are sent to a service bus. Then the notification service will

consume these and turn them into notifications that are stored in the database. Since the

interface for the events were not determined yet and it was difficult to create test events in

Sikri’s existing environment, a local queue was added for testing.

It became apparent that the user stories created at the beginning of the project were far from

good enough, both in quality and quantity. Their scope was too big and ambiguous, making it

time consuming and difficult to break down into smaller PBIs. As they also overlapped, it

was near impossible to know when a story was completed. Therefore, great effort was put

towards improving these, and the total amount went from 13 to 40 well defined ones. There

had also been a lot of ambiguity surrounding PBIs and their descriptions, so the document

containing the “definition of done” was updated to address this. Now, for a PBI to be added

to a sprint it needed to include a description of what is to be done, an estimate, and

acceptance criteria. In the cases where this was still not adequate, additional description of

the task was added.

Page 32 of 70

Since the steering committee meeting had to be held during this sprint, it was decided that it

would be combined with the Sprint Review so that both the supervisor and the project owner

representative could attend together. Afterwards, the retrospective was held, and the team

assessment functionality in Azure DevOps was added to the retrospective process, making it

possible to further assess the team’s health, performance, and areas of improvement.

Looking back on the sprint, the daily standups and retrospective both improved in quality,

and there was more pair programming amongst the team members. Even though this Sprint

Planning was overall better than the last, there were still created too few PBIs, and the

estimating process using effort did not work as well as hoped. The PBIs were better defined,

but not good enough, causing uncertainties when picking up tasks later in the sprint. Because

of the user stories encompassing too much, a lot of ad hoc PBIs were created, straying a bit

from using the backlog as intended. Furthermore, a lot of writing for IS-305 was also done,

giving less time toward development. As a team that favors programming over writing,

together with the things mentioned above, resulted in a low score on the energy for this sprint

as shown above in Figure 11.

6.2.3. Sprint 3 (20.02 – 03.03)

Before starting the Sprint Planning there were still some user stories that needed to be

prioritized before the process of adding new ones could begin. As the requirements for

pulling a new PBI to a sprint had increased, the process took a lot longer than before. As for

the estimation, it was discovered that all the team members had a different understanding of

effort, which led to poor estimates. By changing the estimation metric to hours, the process

went a lot smoother, and the estimates ended up being more accurate. Even though this new

process was more time consuming when creating the PBIs, it made up for it by elevating their

quality, removing uncertainties in the long run.

The sprint goal was to set up a functional RabbitMQ queue that is seamlessly integrated with

SignalR and the backend service. Additionally, the team planned to introduce a filter

mechanism to distinguish between read and unread messages, display notification creation

time, and enable support for multiple users on SignalR. To achieve both changes related to

Figure 11: Team Assessment in sprint 1

Page 33 of 70

SignalR, it was decided to move to Sikri’s service for SignalR, adding the required additional

functionality for the notification system. Furthermore, the team intended to develop a test

case to confirm the correlation between notifications and cases and to provide feedback in the

event of a service malfunction.

Since Sikri would be responsible for most of the design, their frontend team developed a react

component for the notifications that we could use. This new component now needed to be

substituted for the “dummy” component created in the first sprint. Since their component

lacked formatting of the date, this was added to cohere to the designers’ sketches. To transfer

the notifications safely between the back- and frontend, authorization using Sikri’s existing

bearer tokens was implemented. In case of something going wrong with the service,

exception handling was set up to inform the users. This was done by adding a red X to the

notification bell and giving the user feedback in a tooltip when hovering the bell button. This

can be viewed in figure 12.

Since it had been a long time since the team were in contact with the Product Owner, a

meeting was scheduled where a demo showing what had been done so far was presented. Due

to difficulties of setting up meetings with multiple employees high up the chain in Sikri at the

same time, another demo was held for the operations team lead during the Sprint Review. In

both instances, the team received great feedback on the demo.

The retrospect was done as in previous iteration and concluded that this was overall the best

executed sprint so far. This was also reflected in the team assessment, where almost all the

metrics increased, and the energy went from 5.6 all the way to 8.3. This was mostly thanks to

the new and improved user stories and the refactored definition of done, facilitating

improvements throughout the sprint. Furthermore, major progress was achieved on both the

front- and backend, with a great deal of assistance from Sikri's employees. Previously, the

team members had mostly worked on either front- or backend, but during this sprint everyone

contributed on both ends. As for improvements, writing tasks should have been added during

the Sprint Planning and not during the sprint as it was realized they were missing. The sprint

goal proved overly ambitious, resulting in the transfer of a few partially completed and

untouched PBIs into the next sprint.

Figure 12: Error feedback when hovering over notification bell

Page 34 of 70

6.2.4. Sprint 4 (06.03 – 17.03)

The focus in sprint four shifted from development to report writing. Even though

documentation and some writing had been done continuously throughout the project, putting

everything together and setting up a structure for the entire report was needed. The

necessities to fill the holes between what was already present in the report draft became the

basis for a lot of the PBIs this sprint. The focus was not on writing delivery ready quality but

rather filling the report skeleton, while what was done was fresh in memory. At the end of the

sprint, a draft for what would be around half the final report was completed.

On the development side, the background service in the form of a consumer was

implemented. It contained a queue listener along with a worker utilizing multitenancy and

MassTransit to make the sending and receiving of events through the queue possible. In

addition, some bugfixes like removing race condition on database calls, and more extensive

exception handling were done. Both a frontend implementation for the notification settings,

and utilization of the queue lister with SignalR was started but not finished during this sprint.

The "Digitalkonferansen" took place at the theater in Kristiansand on the final Thursday of

the sprint, and both the team and Sikri's employees were invited to attend. The conference

was both informative and enjoyable, featuring a variety of interesting presentations followed

by a meal and socializing. Although the "Digitalkonferansen" was a rewarding experience for

the team and Sikri's employees, it resulted in the loss of one workday for the bachelor,

leaving less time than usual for the sprint.

The Sprint Review was held with just the team members and there was no demo due to a lack

of a considerable product increment from the sprint. After the retrospective, it was clear that

even though a lot of writing was done, there were still improvements to make regarding

writing task lifecycles. Starting with their creation just like programming PBIs, these needed

better descriptions pertaining to their expected outcome. The deadlines for their completion

were also not upheld. Remembering to move PBIs on the board to reflect their current

situation was also not done, and it took too long before PRs got reviewed, hurting the

continuous delivery process. Just like in the second sprint, the team assessment results and

especially the “energy” was quite low, as the sprint this time as well was dominated by

writing tasks.

6.2.5. Sprint 5 (20.03 – 31.03)

After a suboptimal previous sprint regarding development, the team wanted to come back

stronger. In addition to the two unfinished PBIs from the last sprint, a lot of new development

PBIs were added. The goal of this sprint was to get closer to the envisioned MVP, aware that

easter and a lot of writing would consume much of the remaining time of the project. After

the planning, the team conducted a meeting with the supervisor and received feedback on the

report structure and decided that “end of code” for development would be the 28th of April.

Being really motivated, the team rapidly completed most of the development tasks in the first

week, making a replanning necessary. Mostly writing tasks were added as the deadline for the

final report in the other course IS-305 was closing in. Additionally, report feedback from the

Page 35 of 70

supervisor was desired, so a bit more was done on that front, prior to sending it for reviewal.

The need for defining the so far fluid scope of the project became apparent and invitations to

a meeting was sent out. Furthermore, additional invitations were also sent regarding

interviews for the IS-305 course.

At the end of the sprint, the system now had settings for notification types and a working

producer for events (notifications), that simulated the expected behaviour of Elements. A

refactoring of the component structure, and naming for files and methods in the notification

micro frontend was also done to minimize technical debt. Furthermore, an investigation into

how to solve subscriptions to specific cases was started, and a visual bug on notifications

with short texts was fixed. To further ensure quality and consistency, a build pipeline for the

backend repository was set up.

Even though a lot was done on the development front, the Sprint Review was held internally

in the team with no demo. The retrospective was very positive as the team had good progress

on both development and writing tasks. In addition, the scrum processes were well executed

and there was a good amount of pair programming. As for what did not go so well, it was

discovered that when merging the main branch in the frontend repository into the

students_main, the commits were unfortunately squashed, overwriting a lot of the existing git

history. This meant that when the time would come for merging students_main into the main

repository, it must have been manually moved over at the cost of the team’s development

history. As a result, the team decided to make use of a blameless postmortem to investigate

and analyse the incident. Resulting from this, a runbook was written for merging the two

branches, describing how such an incident could be avoided.

6.2.6. Sprint 6 (03.04 – 14.04)

Since the first week of the sprint was easter break, the team had a mini Sprint Planning,

straight after the precious sprint’s retrospective. Here, each member was assigned only one

writing PBI (IS-305) to ensure everybody got some time off, without falling behind in the

course.

The first day back after the vacation, a meeting discussing the project’s current and intended

scope was held with multiple of Sikri’s employees. They were pleased with the current

situation and continued to emphasize the importance of prioritizing quality over quantity,

advising not to add too many new features during the final stages. In their view, there was

already delivered more than expected, and the team came to the agreement that after

implementing subscription logic, focus would be placed towards refactoring and improving

code quality.

Even though most of the two last scheduled workdays of the sprint was lost to conducting

interviews for IS-305, the team managed to implement the backend logic for subscriptions as

well as some minor refactoring. A rework of how new notifications got sent was also started.

Originally, new notifications were sent to the frontend using SignalR, but after discussing

back and forth with Sikri’s developers, an agreement was reached that SignalR was to be

used for triggering a fetch call to the web API, instead of sending the notification directly.

Page 36 of 70

Finally, a review was conducted in unison with the steering committee meeting before the

retrospective was held with just the team.

6.2.7. Sprint 7 (17.04 – 28.04)

Going into the last development sprint of the project as “end of code” had been set to the 28th

of May, the feeling of closing in on the finishing line fueled the team. As a result, a record

number of PBIs were created and added to the board during the planning.

Following Sikri’s recommendation, the team mostly focused on refactoring and bug fixes, but

were also able to implement some new functionality. Since users of elements could operate in

different browser tabs, browsers, and devices, SignalR was used to ensure synchronous

updates across the board, ensuring consistency. Further enhancements were also made to the

subscription and link logic, and a frontend component for viewing and unsubscribing from

cases was implemented.

The file containing all the API calls for our micro frontend was refactored to use the same

fetching library (axios) for all the requests. The notification settings page had a resizing bug

that was resolved, and the test data was updated to resolve an issue regarding the creation

date of the notifications. As was done in the fronted repository earlier in the project, the

backend was refactored with focus on structure and naming conventions for files, methods,

and variables.

Towards the end of the sprint, the team agreed that instead of having a demo at the end of this

sprint for just the team and the Product Owner representative, it was suited to conduct a demo

for anyone interested in Sikri. Therefore, the demo was rescheduled to the 10th of May, where

an invitation to all Sikri employees was sent out. As for the last Sprint Retrospective, it was

mostly positive as the team were able to complete a large quantity of PBIs, both for

development and writing tasks. Furthermore, the team was satisfied with the product created,

and felt a sense of accomplishment. Due to working in an agile manner, it was important to

look at what could be improved, even though there were no more development sprints. As the

deadline rapidly approached, the quality of PR reviews unfortunately dropped, and a couple

bugs were merged into the main branch as a result. Luckily, these were caught thanks to the

pipeline, as well as manually testing all the functionality before handing the product over.

This emphasized the importance of maintaining process quality, regardless of the situation, to

ensure high standards.

6.3. Project Close

Although the final development sprint was concluded, the same sprint structure was kept for

the project close. While this was after the end of code, some last code finalizations had to be

done. On May 1st, the team had the last Sprint Planning, where a schedule of planned

deliveries was developed. Included in these were final code implementations, report

finalization, required system documentation, and a handover document.

Page 37 of 70

At the beginning of the sprint, the priority was to finalize the IS-305 report, as this would

help minimize context switching. Aware of a coming shift of attention mid-sprint after

delivering the IS-305 report, a replanning took place on May 4th. Shifting to the bachelor

report in IS-304, all remaining objectives in the report were separated into specific items on

the board in Azure DevOps. In addition, a timeline was made including meetings and

delivery dates.

As a closing segment of the project and cooperation with Sikri, the team presented the final

product with a demo. This took place May 10th with an open invitation to all Sikri employees.

The supervisor from the university was also invited and was present during the demo at

Sikri’s office. For those unable to attend physically, the demo was streamed and recorded.

Incorporated in the demo was a display of main functionality and discussions regarding

important processes during the project. Following the demo, the team, supervisor, and project

owner representative held the last steering committee meeting. This included a summary of

the project and discussing diverse topics regarding the report.

During the remaining time of the project, the team worked with finalizing the bachelor report

as well as making final adjustments to the handover document. The latter were developed in

consideration to project owner’s wishes, to best facilitate quality and a smooth takeover for

the developers continuing building the system. After completing the handover document, it

was delivered to Sikri. Finally, submitting the report on May 16th marked the conclusion of

the project.

7. Final Product
In this section, a description of the final product will be presented. This will include the

system’s functionality and what steps the team has taken to facilitate further development.

7.1. Functionality

The notification system that has been developed for Sikri’s case management system, is

designed to provide users with an efficient and customizable way to stay updated on relevant

information. This section will primarily present the various functionalities offered by the

notification system from a user perspective, instead of delving into the underlying logic that

supports these features.

When a new notification arrives, users are immediately notified through a visual indicator in

the form of a counter. This counter shows the number of unread notifications and is updated

in real-time, keeping the users informed about the latest relevant events within Elements. To

improve user experience, the list of notifications uses pagination. This allows the system to

render small batches of notifications at a time, making the system more efficient. Every

notification related to cases in the list contains a link, which when clicked, takes the user to

the relevant case in Elements. As of now, the link will take the user to the “old” Elements

case view, as the new UI is still under development. Furthermore, to provide users with

Page 38 of 70

greater control over their received notifications, the system includes a filtering option. This

allows them to easily switch between viewing "all" or just the "unread" notifications. This

can be viewed in Figure 13.

Users also have the possibility to mark individual notifications as "read" or "unread" by either

clicking the notification (only marks it read), or the dot on the right side (can mark as both

read and unread). This state change not only alters the appearance of the notification to easily

differentiate, but also updates the unread counter. Additionally, users have the option to mark

all notifications as read in a single action. Importantly, these functionalities that change a

notifications state are synced across browsers and devices, ensuring a consistent experience

no matter where or how the user accesses the system. These features enable users to manage

their notifications effectively and stay organized.

Recognizing that users have varying preferences and needs, the notification system allows for

customization of their notification settings. Users can choose to receive specific types of

notifications, by changing their preferences in the notification settings tab shown in Figure

14. The system also enables users to manage their subscriptions to individual cases in the

same tab, providing a list of currently subscribed cases and the option to unsubscribe if they

are no longer interested.

Finally, to ensure that users are informed about the status of various parts of the notification

system, feedback is provided when the system is experiencing issues, which enables users to

be aware of any potential problems affecting their experience. These can be viewed in

Figures 15 through 17 below. The notification system will also be able to maintain real-time

Figure 13: List of notifications Figure 14: Settings for notifications

Page 39 of 70

synchronization across different browsers and devices, ensuring that unread counters and

notification read status remain consistent. This means it will work regardless of the device or

browser utilized by the user, making it easier to integrate with multiple platforms.

7.2. Facilitating Further Development

Early in the project, it was made clear to the team that the solution developed was to be used

by Sikri and their customers. Therefore, it was important to create a structure on how to best

possible facilitate further development of the product. The team’s aim was to produce a

product of high quality that Sikri could build upon and expand.

To ensure that the most important functionality was developed first, the team used the

prioritized user stories. This list was provided to Sikri, serving as a guide for future

development. Showing the progress made and the tasks yet to be accomplished, the user

stories informed Sikri about the project’s status.

In terms of documentation, the team prepared a handover document that outlines the expected

behavior of the product, potential improvements, known faults, and To-Dos. This document

provided Sikri with a better understanding of the product and how to continue working on it.

Additionally, the Readme.md file in the different repositories included information on how to

Figure 17: Feedback when SignalR server is down

Figure 16: Error feedback

Figure 15: Hovering over notification bell

Page 40 of 70

run the different parts of the application, as well as information pertaining to the different

API endpoints.

The team employed the design principles maintainable, testable, and flexible as mentioned in

chapter 5.1 Architecture design criteria. For these, the focus throughout the project was on

quality over quantity, with manual and written testing, as well as establishing pipelines being

a key aspect of ensuring the product's quality. Early in the development process, it was

decided to work on fewer functionalities but complete them with high quality, rather than to

deliver many unfinished or low-quality ones. This was to give Sikri the best possible

foundation for further development.

It was also included some functionality that was not defined in the team’s POC, but that

could be built upon by Sikri in the future for a more complete notification system. For

example, settings for email notifications were added, even though a service for sending

emails has not been implemented. Additionally, it is possible to view and unsubscribe from

cases in the micro frontend. The endpoint for subscribing is also ready, but Sikri will have to

implement the UI for this as it is outside of the team’s scope. Inclusion of the endpoint makes

it simpler for Sikri to further develop the complete functionality for subscriptions.

Lastly, the team had access to several of Sikri’s repositories that made it possible to follow

their code standards. This included following their established practices for repository

history, naming conventions, and test structure. Ensuring this throughout the project made

sure that further development and handover went smoothly for both parties.

8. Reflection
In this chapter, the team will reflect on the work that has been done this past semester. Some

of the challenges faced, the important decisions that was made, and how these decisions

affected the final product will be discussed.

8.1. Process and methods

“Process and methods” will present and discuss some of the central decisions the team made

related to processes and methods for ensuring quality and control in the project. By reflecting

upon these decisions, the aim is to provide insights into the rationale behind choices and the

impact they had on the overall success.

8.1.1. Methodology

As mentioned in chapter 2.1 Methodology, the choice of Scrumban as the development

methodology was influenced by a few factors. First and foremost, Scrumban is the standard at

Sikri, which played a significant role in the decision, as it allowed both the team and Sikri to

be on the same page with the development process. Additionally, it enabled working

Page 41 of 70

iteratively and flexibly by combining the aspects of both Scrum and Kanban that best suited

the project's needs and requirements.

When it comes to alternative methodologies that could have been chosen, there was an option

to either use pure Scrum or pure Kanban. However, the team believed that the additional

flexibility provided by the Scrumban method would be more beneficial for the project. While

Kanban offers greater flexibility than Scrum, it does not provide the same level of structure

and guidance for managing software projects (Rehkopf, 2023). As a result, it was decided to

adopt a hybrid approach, combining elements of both Scrum and Kanban to achieve the right

balance of flexibility and structure.

One challenge faced with the methodology was that there were periods with an empty

Kanban board, leading to the need for re-planning in the middle of the sprint. This could

potentially have been solved by adopting a more Kanban-focused approach using the “pull-

based” system for adding new PBIs. This again might have led to longer Sprint Plannings, as

the team would have needed more PBIs ready in the backlog.

Throughout the project, there have been made incremental improvements to the various

ceremonies, including Sprint Planning, and daily stand-ups. For instance, in the first couple

of sprints, during Sprint Planning, some PBIs were created ad-hoc without a strong

connection to a user story. This was mostly due to poorly defined user stories in which the

scope was too big. As the project progressed, the team tweaked both the user stories to be

more granular, as well as the process of creating PBIs by ensuring user stories were the

foundation for any new PBI. This made Sprint Planning more effective as the team now could

easily take in the highest prioritized user stories and create PBIs from these. When it comes

to daily stand-ups, during the first sprint they only consisted of each team member sharing

their progress and challenges thus far. However, as the project progressed, "walk the board"

was incorporated, which made it easier to remain focused on the work items on the board and

avoid distractions.

Overall, the team is satisfied with the choice of methodology despite facing some challenges

along the way. These challenges were proactively addressed and changes to the methods were

made as needed.

8.1.2. Local Development Environment

A reoccurring dilemma was choosing between using local, temporary solutions or integrating

with Sikri’s cloud environment during development. For the database, the team decided that

it was best to go for a local implementation. Being independent from the existing monolithic

database meant having fewer dependencies and more control over the iteration process. This

decision was supported by the developers at Sikri, as the database schema could easily be

implemented in their monolith and the database interface in the project’s backend repository

updated to support its use.

Following the reasons for choosing a local database implementation, a local queue was

developed. In addition, the events that were generated in Elements and placed in the queue

Page 42 of 70

contained too little information for the proposed solution, making a local implementation

even more appealing. As a result of moving forward with the local alternative, the team was

able to experiment and modify independent of Sikri’s environment limitations.

8.1.3. Processes

This section will discuss the different processes used by the team throughout the project to

ensure quality and control in both work and project management. It also highlights the

commitment to continuous improvement, emphasizing the iterative effort to improve

different processes throughout the project.

When encountering an error during the merging process with the main branch, the team

performed a blameless postmortem. As a preventive measure to reduce the chance of a

similar incident happening in the future, a runbook detailing the proper merging process was

created. This could be referred to later if anyone had to go through the process again.

Furthermore, the issue was discussed with the leader of the frontend team and asked for

permission to merge students_main into the main branch.

In addition to the postmortems, the team maintained structure and ensured that all

requirements were met by following a well-defined lifecycle for PBIs as outlined in the

"Definition of Done" document (see Appendix 8). As the project progressed, these processes

were continuously improved based on experiences and feedback from team members. For

instance, PBI requirements were refined to include more detailed acceptance criteria and

clearer definitions of the tasks to be accomplished. This allowed for better estimation and

improved collaboration among the members. The pull request review process was also

improved by providing more explicit guidelines for code smells, test review, and manual

testing. This made the review process more efficient and ensured a higher quality of code in

the final product.

It is also important to discuss the decision to consider the code as "done" when it has gone

through all the processes described in the “definition of done” document as well as being

merged into the main branch. Although acknowledging the potential benefits of using Sikri’s

different development environments such as dev and test, the team opted against it to avoid

extra complexity in addition to already having chosen to use a local environment for the

database. Moreover, it was decided not to include Sikri's testers in the Definition of Done,

mainly due to them being a scarce resource.

Another important aspect of the project was addressing technical debt, which refers to the

accumulation of shortcuts and sub-optimal decisions in the development process that

eventually hinder progress. In order to pay down technical debt, time was allocated

periodically in sprints to revisit and refactor code.

Furthermore, the team constantly sought to improve processes by reflecting on performance

in Sprint Retrospectives and discussing any areas for improvement. During these

retrospectives, the team assessment feature in Azure was utilized to measure the efficiency of

some processes by presenting team members statements like "I feel safe and do not fear

Page 43 of 70

making mistakes" and "Tools/resources/processes/procedures allow me to effectively meet

my customers' needs". This helped identify potential inefficiencies, bottlenecks, and other

issues in the processes and implement changes to address them.

Overall, there was a feeling that the processes utilized, as well as the commitment to

continuously improving them, had a positive impact on the project. Furthermore, centralizing

the processes related to a PBI's lifecycle in the "Definition of Done" document proved to be a

great help to the team.

8.1.4. Estimation and Time Tracking for Product Backlog Items (PBIs)

The team adopted a simple estimation technique for PBIs, primarily for making sure each

PBI on the kanban board was not larger than a typical day’s work (8 hours). Even though the

team were conscious and acknowledged the relevant literature on the importance of

estimation and time tracking in project management, a choice was made to not make this a

big priority for this project based on a couple of arguments. First, the team has during this

bachelor’s project worked as in-house developers rather than hourly consultants which means

no-one is being charged by the number of hours worked. DeMarco and Lister (2013) also

argue in "Peopleware: Productive Projects and Teams" that overly precise estimation and

time tracking might lead to increased overhead and reduced productivity in software

development projects.

Since estimation is not the primary metric for maintaining control over the project's progress,

several other alternative measures were employed to track the remaining work. These

measures included:

1. Regularly updating the Product Backlog: The team continuously refined the Product

Backlog, adding or removing tasks as necessary. This helped maintain a clear view of

the project's scope and the work left to complete.

2. Conducting daily stand-up meetings: Daily stand-up meetings were held to discuss

each team member's progress and any obstacles encountered. This practice fostered

communication and collaboration, ensuring that the team always was aware of the

project's status.

3. Reviewing progress in Sprint Reviews and retrospectives: At the end of each sprint,

both reviews and retrospectives were conducted to evaluate progress, performance

and identify areas for improvement. These sessions helped fine-tune processes and

maintain a clear understanding of the work remaining in the project.

8.1.5. Usage of a Separate “main” Branch Frontend

When developing the micro frontend, the team were supposed to work directly in the existing

mono repository. Being aware that other developers at Sikri were currently working in the

frontend repository, the team wanted to make sure that they did not introduce any breaking

changes or negatively impact Sikri’s progress and workflow. Therefore, a decision was made

to use a separate branch that made it possible to develop code separately without impacting

the main branch.

Page 44 of 70

Looking back, the worries about interrupting other developers' workflow were unnecessary,

as the components in the frontend repository were already separated. This separation meant

that the development was unlikely to introduce breaking changes to the other developers’

work. The use of a separate branch did come with some challenges, such as the need to

periodically merge updates from the main branch into the separate branch, which resulted in

several merge conflicts. Additionally, the continuous integration (CI) pipeline for the

frontend repository was not configured to deal with the separate branch, causing the pipeline

pass rate to drop as it failed every time a change was pushed to the students_main branch.

8.2. Product Decisions

This section will reflect on important product decisions that were made throughout the

project. These include choices regarding analysis, design, and use of technology that directly

affected the outcome of the final product.

8.2.1. Prioritization of Functionality

The prioritization of user stories consisted of fundamental decisions directly affecting the

product. This was done in cooperation with Sikri, to best facilitate a correct understanding.

Due to continuously developing a greater understanding, rework was undertaken while in the

early phase of development. Within this process, the stories became smaller and more

specific, so they could be easier managed. Looking back, this could have been done more

often, iteratively updating the document to further ensure correctness regarding the

requirements and specifications.

Even though not reflected in the final prioritization of the user stories, there were decisions

made during the development phase that excluded some features from the scope. The reason

for this was that the team had created user stories for a more complete service in the hopes of

delivering more than expected. An example was sending notifications through e-mail, but as

there simply was not enough time, it was removed from the scope. Since the changes and

decisions regarding prioritizations should reflect and represent the product, there should have

been more iterations and official meetings related to this. However, this turned out might be a

blessing in disguise for further development, as the final list of user stories outlines a more

complete service.

8.2.2. Message Design

The design of the message contracts within the queue was important as it set the requirements

for generating notifications. Through the development, how generic or specialized the

messages should be, was a recurring consideration. Early on, the message contract was

constructed much like the notification object, allowing for rapid development. In later

iterations, a new message contract was added based on an event Sikri currently published in

their queue. Seeing clear use cases for both, the team proposed a design with a generic

message based on the requirements of the microservice, and a proof of concept on how to

Page 45 of 70

utilize the existing specialized message designs. Working with the generic message contract

proved to be somewhat tedious. When the contract changed, tight coupling meant changes

were needed elsewhere. This is something to be mindful of in future development.

8.2.3. SignalR

The system requirements highlighted the need for real-time notifications. While SignalR was

the preferred library from Sikri, the team assured that this technology would fulfill the needs.

While other solutions like Socket.io and pusher could also cover the requirements, it made

sense to go for Sikri’s preference as they already had SignalR in existing solutions. Early

implementation consisted of publishing notifications to the client using a separate SignalR

server which resided as its own project in the NotificationHub repository. Later, it was

brought to attention that Sikri had their own SignalR microservice, and a decision was made

to shift and use this instead. Since this service had differences, it required slight changes in

both the micro frontend and micro service. Even though this transition came with extra effort,

it facilitated nicely for further development as this part of the system now was integrated in

Sikri’s existing service. Sometime after this, the responsibility of SignalR was also changed.

Moving away from sending notifications directly, SignalR would now be responsible for

triggering clients to send a request to the backend for the new notification. This modification

considered the architectural design criteria “efficient” and “comprehensible” presented in

chapter 5.1, by reducing traffic payload and making clear separation of duties between

SignalR and the API.

8.2.4. Pagination

Retrieving a user’s notifications was something that would occur frequently, leading to

discussions to optimize this process. Clients would preliminarily make calls to retrieve all

their notifications, but as the total number of these would increase over time, this could

introduce heavy traffic. Therefore, pagination was implemented. By using pagination, the

team could define a specific amount of notification to be retrieved on initial load, reducing

the size of the payload. When a user gets close to the bottom of the notification list when

scrolling, a new call to the API is made, fetching the next defined number of notifications.

This way of doing it could result in a greater number of calls to the API, but with an expected

optimalisation of the system in the long run where countless notifications exist.

8.2.5. Subscription

The system requirements developed in the analysis made clear the expected functionality

regarding subscription to cases. In development on the other hand, the implementation of this

came with multiple difficulties. Since the other components in the micro frontend UI were

still under development, none of them contained cases, thus the option to subscribe to a case

did not exist. In addition, there was unclarity surrounding the functional requirements for its

implementation. The UX team were in the process of designing the entirety of the new

Element UI, which reasoned for an unfinished design regarding the display of subscriptions

Page 46 of 70

in the system. These challenges combined hindered the development, leading to a different

outcome then first expected.

In consideration of the circumstances, the team implemented the possibility for subscribing to

cases through an API, in which other micro frontends could utilize in the future. As a feature

related to the presentation of subscriptions in the UI, the user should be able to modify their

notification settings related to individual cases. This ended up being down prioritized due to

the limited time frame and unclear requirements. Despite the lack of function in the UI for

subscribing to cases, the team think that the decisions taken made the most out of the

circumstances as well as the time frame of the project.

8.2.6. Linking

It was clear from the beginning that the notifications presented to the user should link to the

corresponding location in the UI. However, this implementation experienced difficulties. One

of the issues was a result of Elements having multiple domains. From a backend perspective,

it was difficult to generate links due to the domains being unknown. One of the message

designs posed a solution of bringing this information from the sending service, but this set

requirements for other services outside of the project’s scope. Common within the URLs for

the domains were identifiers used to navigate to a certain case, registry entry, or document.

Since these were present within the messages consumed from the queue, it was decided to

bring them into the notifications sent to the client. This enabled the client to construct the

links, only using predefined domains. As the new Elements was still under development it did

not contain actual cases to navigate to. Therefore, in the proof of concept, the links were

generated towards the old Elements UI presenting the corresponding page based on the

notifications content. This implementation did not fulfill a final solution, as it utilized

partially hard coded URLs due to the lack of logic towards the different domains.

Nevertheless, the implemented logic for generating the links can be used as a base and be

built upon in further development.

8.2.7. User Interface and Design

In the early stages of the project, it was made clear that the design of the new Elements UI

was Sikri’s UX team’s responsibility. Due to this, there was little emphasis on design from

the team throughout the project. This meant that greater focus could be held towards

functionality and backend development. Throughout the project there was uncertainty

regarding design as the UX team were in the process of making these. As a result of this the

team decided to put a bit more effort into design than initially thought, to exchange ideas with

the UX team. The design of the POC ended up being a combination taking inspiration from

both sides. The UI for the notification settings ended up with an unfinished design as it was

implemented late in the project where refactoring and ensuring quality of the functionality

took precedence. Although having more complete designs would likely have increased the

efficiency of the development process, the absence of this allowed the team to incorporate

their own creativity into the product.

Page 47 of 70

9. Conclusion
The team started off with limited to no knowledge regarding multiple of the different

technologies chosen for the project, resulting in a steep learning curve. A certain level of

domain knowledge was required and how notification services operate was also unknown,

meaning there was a lot to digest and learn before any development could begin. From a

learning point of view, this has been a blessing as there have constantly been new things to

learn in a lot of different fields.

Looking back, there are multiple successful aspects regarding the project execution that we

want to highlight. However, the most important one would be our ability to identify and

continuously improve our processes and methods. Throughout the project, this has improved

how we work as a team, resulting in a higher quality product. Additionally, it has provided

the team with a greater understanding of project management as well as the technical aspects

of software development.

In conclusion, the team is very proud of the outcome of the project and pleased with the

positive feedback from Sikri found in Appendix 1: Statement from Sikri. It was also

reassuring that both parties agreed that the requirements and expectations set out at the

beginning of the project had been met to a high degree. Overall, this project has been a

valuable and rewarding experience for our team, and we look forward to taking the skills and

knowledge we have gained into future projects.

Page 48 of 70

References
Agile Alliance. (2015). What is Agile? Retrieved from Agile Alliance:

https://www.agilealliance.org/agile101/

Agile Alliance. (n.d.). User Story Template. Retrieved April 12, 2023, from Agile Alliance:

https://www.agilealliance.org/glossary/user-story-template/

Agrawal, H. (2022, August 18). What is TypeScript and why should you use it? Retrieved March 23,

2023, from contentful: https://www.contentful.com/blog/what-is-typescript-and-why-should-

you-use-it/

Altexsoft. (2021, May 18). Acceptance Criteria for User Stories: Purposes, Formats, Examples, and

Best Practices. Retrieved April 12, 2023, from Altexsoft:

https://www.altexsoft.com/blog/business/acceptance-criteria-purposes-formats-and-best-

practices/

Association for Project Management. (2022). What is project Management? Retrieved from

https://www.apm.org.uk/resources/what-is-project-

management/#:~:text=Definition,a%20finite%20timescale%20and%20budget.

Aston, B. (2023, March 14). 10 Reasons Why Project Management Is So Important For Orgs.

Retrieved May 12, 2023, from dpm: https://thedigitalprojectmanager.com/personal/new-

pm/why-is-project-management-important/

Atlassian. (2018). What is scrum? Retrieved from Atlassian: https://www.atlassian.com/agile/scrum

Atlassian. (2019). What is kanban? Retrieved from Atlassian: https://www.atlassian.com/agile/kanban

Atlassian. (2020). How to run a blameless postmortem. Retrieved from Attlasian.com:

https://www.atlassian.com/incident-management/postmortem/blameless

Atlassian. (2023). Engineering higher quality through agile testing practices. Retrieved from

Atlassian: https://www.atlassian.com/agile/software-development/testing

Atlassian. (n.d.). What is Agile? Retrieved May 12, 2023, from Atlassian:

https://www.atlassian.com/agile

Atlassian. (n.d.). What is version control? Retrieved May 13, 2023, from Atlassian Bitbucket:

https://www.atlassian.com/git/tutorials/what-is-version-control

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., . . .

Sutherland, J. (2001). Manifesto for Agile Software Development. Retrieved April 12, 2023,

from The Agile Manifesto: https://agilemanifesto.org/iso/en/manifesto.html

Burgan, S. C., & Burgan, D. S. (2014, October 26). One size does not fit all: Choosing the right

project approach. Retrieved April 20, 2023, from Project managment institute:

https://www.pmi.org/learning/library/choosing-right-project-approach-9346

Carter, K. (2023, January 17). Coding is Not Enough: The Importance of Investing in Domain

Knowledge. Retrieved from Level Up Coding: https://levelup.gitconnected.com/coding-is-

not-enough-the-importance-of-investing-in-domain-knowledge-a8afb690f758

Page 49 of 70

Chec, M. (2020, November 03). Walking the Board on Daily Scrum. Retrieved May 12, 2023, from

medium: https://medium.com/serious-scrum/walking-the-board-on-daily-scrum-

5b468c760329

CMOE. (n.d.). Team Performance Assessment. Retrieved May 13, 2023, from Center for Management

& Organization Effectiveness: https://cmoe.com/glossary/team-performance-assessment/

DeMarco, T., & Lister, T. (2013). Peopleware: Productive Projects and Teams . New York.

Deshpande, C. (2023, February 07). The best guide to know what is react. Retrieved March 23, 2023,

from simplilearn: https://www.simplilearn.com/tutorials/reactjs-tutorial/what-is-reactjs

Eagle, A., Chau, K., Cross, J., Savkin, V., Gonzalez, P., Reock, J., & Weinberger, B. (2022). Mnorepo

Explained. Retrieved from https://monorepo.tools/#what-is-a-monorepo

Fletcher, P. (2020, September 10). Introduction to SignalR. Retrieved March 23, 2023, from

Microsoft: https://learn.microsoft.com/en-us/aspnet/signalr/overview/getting-

started/introduction-to-signalr

Harris, C. (n.d.). Microservices vs. monolithic architecture. Retrieved from Atlassian:

https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-

monolith

IBM. (2016). What is software testing? Retrieved from IBM: https://www.ibm.com/topics/software-

testing

Indeed. (2022, December 10). Indeed. Retrieved from Quality Assurance in Project Management

(With 3 Types): https://www.indeed.com/career-advice/career-development/what-is-quality-

assurance-in-project-management

Indeed. (2023, March 10). What Is System Analysis and Design? (Plus Benefits). Retrieved from

Indeed: https://www.indeed.com/career-advice/career-development/what-is-system-analysis-

and-

design#:~:text=Benefits%20of%20system%20analysis%20and%20design&text=Enabling%2

0comprehension%20of%20complicated%20structures,the%20workload%20of%20IT%20em

ployees

Indeed Editorial Team. (2023, February 03). Guide To Assessing Teams (With Benefits, Elements and

Tips). Retrieved May 13, 2023, from indeed: https://www.indeed.com/career-advice/career-

development/assessing-teams

ISO. (2015). ISO - Standards. Retrieved from ISO: https://www.iso.org/standards.html

ISO. (n.d.). ISO/IEC 25010. Retrieved May 10, 2023, from ISO 25000:

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Jackson, C. (2019, June 19). Micro Frontends. Retrieved from martinFowler:

https://martinfowler.com/articles/micro-frontends.html

Kajal. (2021, August 24). Scrumban – Beginner’s Guide to Scrumban Methodology. Retrieved May

15, 2023, from Unichrone: https://unichrone.com/blog/agile/beginners-guide-to-scrumban-

methodology/#What_is_Scrumban

Page 50 of 70

Krawczyk, B. (2022, November 17). What is quality assurance (QA) in software development?

Retrieved from LogRocket: https://blog.logrocket.com/product-management/what-is-quality-

assurance-qa-software-development/

Lewis, J., & Fowler, M. (2014, March 25). Microservices. Retrieved from MartinFowler:

https://martinfowler.com/articles/microservices.html

Lynn, R. (n.d.). WHY USE KANBAN BOARDS? Retrieved May 12, 2023, from planview:

https://www.planview.com/resources/guide/introduction-to-kanban/use-kanban-boards/

Martin, R. C. (2018). Clean Architecture: A Craftman's Guide To Software Structure And Design.

Pearson education.

MassTransit. (n.d.). What is MassTransit? Retrieved March 23, 2023, from MassTransit:

https://masstransit.io/introduction

Mathiassen, L., Munk-Madsen, A., Nielsen, P. A., & Stage, J. (2018). Object Oriented Analysis &

Design. Hadsund: Metodica.

McKinsey & Company. (2021, February 17). When code is king: Mastering automotive software

excellence. Retrieved May 14, 2023, from McKinsey & Company:

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/when-code-is-

king-mastering-automotive-software-excellence

Microsoft. (2020, February 19). Hands On Lab: Real-Time Web Applications with SignalR. Retrieved

May 13, 2023, from Microsoft: https://learn.microsoft.com/en-

us/aspnet/signalr/overview/getting-started/real-time-web-applications-with-signalr

Microsoft. (2021, 05 25). Entity Framework Core. Retrieved from Microsoft Learn:

https://learn.microsoft.com/en-us/ef/core/

Microsoft. (2022, September 21). The C# type system. Retrieved April 20, 2023, from Microsoft:

https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/types/

Microsoft. (2022, October 10). What is Azure DevOps? Retrieved May 13, 2023, from Microsoft:

https://learn.microsoft.com/en-us/azure/devops/user-guide/what-is-azure-devops?view=azure-

devops

Microsoft. (2023, February 13). .NET architecture. Retrieved March 23, 2023, from Microsoft:

https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/#net-architecture

Microsoft. (2023, February 13). A tour of the C# language. Retrieved March 23, 2023, from

Microsoft: https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/

Microsoft. (2023). Azure Pipelines. Retrieved from Microsoft Azure.

Microsoft. (2023, October 02). Unit testing C# in .NET Core using dotnet test and xUnit. Retrieved

May 01, 2023, from Microsoft: https://learn.microsoft.com/en-us/dotnet/core/testing/unit-

testing-with-dotnet-test

Microsoft. (2023, March 23). What's new in SQL Server 2022 (16.x). Retrieved April 25, 2023, from

Microsoft: https://learn.microsoft.com/en-gb/sql/sql-server/what-s-new-in-sql-server-

2022?view=sql-server-ver16

Page 51 of 70

Microsoft. (n.d.). Azure Boards. Retrieved May 13, 2023, from Microsoft Azure:

https://azure.microsoft.com/en-us/products/devops/boards/

Microsoft. (n.d.). What is ASP.NET? Retrieved March 23, 2023, from Microsoft:

https://dotnet.microsoft.com/en-us/learn/aspnet/what-is-aspnet

MUI. (n.d.). Material UI - Overview. Retrieved March 23, 2023, from MUI: https://mui.com/material-

ui/getting-started/overview/

Nath, A. (2023, April 10). What is the Role of Communication in Quality Management? Retrieved

May 10, 2023, from tutorialspoint: https://www.tutorialspoint.com/what-is-the-role-of-

communication-in-quality-management

Postman. (n.d.). What is Postman? Retrieved March 23, 2023, from Postman:

https://www.postman.com/product/what-is-postman/

ProductPlan. (2021, September 09). The Definition of Done: What Product Managers Need to Know.

Retrieved April 12, 2023, from ProductPlan: https://www.productplan.com/learn/agile-

definition-of-done/

ProductPlan. (n.d.). MoSCoW Prioritization. Retrieved April 12, 2023, from ProductPlan:

https://www.productplan.com/glossary/moscow-prioritization/

Przystalski. (2021, September 06). Pair Programming: Pros, Cons, Best Practices. Retrieved April

12, 2023, from Codete Blog: https://codete.com/blog/pair-programming-pros-cons-best-

practices

Rehkopf, M. (2023). Kanban vs. scrum: which agile are you? Retrieved from Atlassian:

https://www.atlassian.com/agile/kanban/kanban-vs-scrum

Rehkopf, M. (n.d.). User stories with examples and a template. Retrieved April 12, 2023, from

Atlassian: https://www.atlassian.com/agile/project-management/user-stories

Roper, K. (2021, September 26). Importance of System Analysis in Software Development. Retrieved

from Linkedin: https://www.linkedin.com/pulse/importance-system-analysis-software-

development-kimone-roper?trk=public_profile_article_view

Sheth, H. (2021, March 22). NUnit vs. XUnit vs. MSTest: Comparing Unit Testing Frameworks In C#.

Retrieved May 10, 2023, from LambdaTest: https://www.lambdatest.com/blog/nunit-vs-

xunit-vs-mstest/

Simplilearn. (2023, February 24). Guide To Using Typescript With React. Retrieved May 13, 2023,

from simplilearn: https://www.simplilearn.com/tutorials/reactjs-tutorial/react-typescript

Sirotka, A. (2022, March 15). What is Material UI? Retrieved March 23, 2023, from Flatlogic:

https://flatlogic.com/blog/what-is-material-ui/

Sommerville, I. (2016). Software Engineering (10. ed.). Pearson.

Stanton, K. (2022, February 24). Quality Assurance vs. Quality Control Explained: 5 key differences.

Retrieved from Qualio: https://www.qualio.com/blog/quality-assurance-vs-quality-

control#:~:text=QA%20is%20process%2Doriented%2C%20and,results.

tcagley. (2013, November 07). Questions I am Frequently Asked: What Does “Walking the Board”

Mean? Retrieved from Software Process and Measurement:

Page 52 of 70

https://tcagley.wordpress.com/2013/11/07/questions-i-am-frequently-asked-what-does-

walking-the-board-mean/

Toturialspoint. (n.d.). Software Testing - Quick Guide. Retrieved from Toturialspoint:

https://www.tutorialspoint.com/software_testing/software_testing_quick_guide.htm

TutorialPoint. (n.d.). MS SQL Server - Overview. Retrieved April 28, 2023, from TutorialPoint:

https://www.tutorialspoint.com/ms_sql_server/ms_sql_server_quick_guide.htm

University of Agder. (2021). Bachelor Thesis in Information Systems. Retrieved May 10, 2023, from

University of Agder: https://www.uia.no/en/studieplaner/topic/IS-304-1

Userpilot. (2023, March 8). What are User Surveys and How to Conduct One? Retrieved from

Userpilot: https://userpilot.com/blog/user-surveys/

Visual Paradigm. (2023, March 28). Agile Methodology: Embracing Flexibility, Collaboration, and

Continuous Improvement for Effective Project Management. Retrieved from Visual

Paradigm: https://guides.visual-paradigm.com/agile-methodology-embracing-flexibility-

collaboration-and-continuous-improvement-for-effective-project-management/

xbosoft. (n.d.). Definition of Software Quality. Retrieved April 15, 2023, from xbosoft:

https://xbosoft.com/software-qa-consulting-services/definition-software-quality/

Yousuf, F. (2022, October 10). RabbitMQ vs Azure Service Bus – What’s the Difference? (Pros and

Cons). Retrieved May 14, 2023, from Cloud infrastructure services:

https://cloudinfrastructureservices.co.uk/rabbitmq-vs-azure-service-bus-whats-the-difference/

Page 53 of 70

Appendix

Appendix 1: Statement from Sikri

Page 54 of 70

Appendix 2: Team Evaluation

Throughout the project, all members have brought great efforts and contributions. As a team

where everyone has strong opinions, we have facilitated open communication to view all

perspectives. The team members had varying responsibilities with the goal of best utilizing

the individual team members’ strengths. All members have actively participated in the

managerial activities and conducted technical processes such as reviewing pull requests and

pair programming. Regarding development, all members contributed to various parts of the

system ensuring a high understanding of the entire system. As a team, we are proud of the

individual efforts and high work ethic which led to the success of the project. The following

subchapters further outline the team members’ individual contributions.

Aleksander

In this project, my primary role centered around backend development with a more specific

focus on implementing service bus, with MassTransit as an example. Although my primary

role was in backend, I also worked on the frontend where one example is that I had the

responsibility of ensuring that the states of notifications for a user would synchronize across

multiple browsers and devices.

Serving as the Scrum Master for our team, I facilitated Scrum ceremonies like planning,

retrospective and daily standup. Furthermore, I was also responsible for setting up the two

Continuous Integration pipelines for the backend repository.

Hermann

Throughout this project my main responsibility has been the micro frontend implementation.

To some extent I touched upon most of the components and functionality here but worked the

most on creating a skeleton for the micro frontend, the notification component, and the

notification list. I also did a lot regarding pagination and the SignalR client. Even though

most of my contributions came on this front, I also developed for the backend, for example

implementing pagination for retrieving notifications.

I was appointed as the team leader, but as a flat hierarchy was preferred, most of the

responsibilities ended up being shared amongst the team. Looking back, I was involved with

a lot of the project’s different aspects resulting in a great learning experience.

Bjørnar

I have had most of my focus toward building the Web API of the project. This involved

development of the various layers from the controller to the database. While minimal

involvement on the client side, I added authentication onto the requests, as I introduced

authorization of the controllers in the backend.

Page 55 of 70

Kristoffer

As an individual team member, I have primarily been a backend developer with a special

focus on architecture and how our system interoperates. I have worked much on SignalR, and

some on database and queue. I have done little frontend work, except work on the SignalR

client but have helped with debugging on occasion.

Lars

The main responsibility I had in this project was around frontend development, with the most

work done on settings, filtering and changing of read state. The work done on settings was

only situated frontend, making their design and functionality, and connecting it up to the API

endpoints made by Bjørnar. Filtering of the notifications was originally a frontend solution

but was later changed largely by Hermann to have a more backend-oriented solution.

Changing the read state of a notification required work both front- and backend to work.

These were the largest specific things done by me, and other than this I have done work here

and there in both front- and backend.

Page 56 of 70

Appendix 3: Group Contract

Page 57 of 70

Page 58 of 70

Appendix 4: Risk Analysis

 Probability

Rare Unlikely Possible Likely Highly likely

1 2 3 4 5

Consequence

Insignificant 1 1 2 3 4 5

Less 2 2 4 6 8 10

Moderate 3 3 6 9 12 15

More 4 4 8 12 16 20

Catastrophic 5 5 10 15 20 25

Nr. Risk Probability Consequence Impact Response Comment

1 Minor sickness 5 1 5 Accept Work from home if

possible

2 Long-term

sickness

2 4 8 Accept Distribute the person's

tasks to the rest of the

group

3 Communication

failure with

Sikri

2 3 6 Avoid This is thought to be

small communication

gaps with associated

low consequences

4 Communication

failure

internally in the

group

1 2 2 Avoid The group meets almost

every day for school

purposes, and 80% also

live together

5 Wrong

priorities

2 4 8 Limit Will use Sprint Planning

and part of the

associated processes.

For example, backlog,

Scrum Master, etc.

6 Unnecessary

use of time

4 2 8 Limit Scrum Master. Asking

for help

7 Avoidance/poor

motivation

3 1 3 Accept Motivate each other

along the way, and

collectively make sure

that everyone

contributes

8 Conflicts within

the group that

prevent

progress

1 4 4 Avoid The group consists of

people who dare to

speak up when there is

something, so it is

important to be open to

conversations and take

them in a professional

manner. We have daily

meetings where any

Page 59 of 70

problems can be raised

so we can solve them

early

9 Turning up late 3 2 6 Accept Showing up late every

now and then is

something that happens.

If it happens frequently

and is also not reported,

it will escalate into a

more serious problem

10 Lack of

knowledge and

skills

4 2 8 Limit Use each other, the

internet, and available

resources at Sikri when

help is needed

11 Different

coding

standards

2 2 4 Avoid Agree on a coding

standard before we start

12 Low quality

code

4 4 16 Limit The quality of the code

will probably increase

with the time we spend

on the project. This

means that it will

gradually improve with

the semester. It will

therefore be natural to

fix older code over time.

Usage of code reviews

13 Low quality

testing

4 5 20 Limit The group has some

knowledge of testing,

but not to the extent

required for this project.

Naturally, this will

improve throughout the

semester through

experience and

improvement of our

skills

14 Faulty

equipment

2 3 6 Accept Is largely outside our

control and something

that can always happen

15 Improper use of

software

2 2 4 Avoid Build up knowledge

before use

16 Poorly

structured work

1 4 4 Avoid Structure our work well

and have a good

dialogue between us

throughout the sprints.

Have an overview of

Page 60 of 70

which task you are

working on at the time

17 Loss of data 2 4 8 Avoid Have regular backups of

your work. Using Azure

can make it much easier

18 Low security

standard

2 4 8 Avoid Follow industry

standards

19 Breach of

confidentiality

1 5 5 Avoid Do not share

information about Sikri

or the project with

outsiders

20 Weak

documentation

4 3 12 Limit Documenting the code

will make it easier for

both group members

and employees at Sikri

to know what is going

on without reading all

the lines. Is good

training and makes

handover easier

21 Stuck on a task 5 2 10 Avoid This will happen, and

the group together with

Sikri must ensure that

there is a low threshold

for asking for help

22 Loss of a team

member

1 5 5 Accept Highly unlikely that it

will occur, but in the

event the person must

be removed from

everything involved

with the project and the

person's tasks must be

distributed among

remaining members

23 Wrong scope 2 3 6 Limit A dynamic process

24 Rushing

decisions

3 2 6 Limit Most likely to occur if

group is tired from

using (too) much time

on other decisions.

Page 61 of 70

Appendix 5: User Stories

Must Have

User Story MOSCOW

1 As a user, I want to view my notifications in the pop-up from the bell icon,

so that I can easily get an overview of both old and new notifications.

Must have

2 As a user, I want to be notified in Elements when a case is assigned to me,

so that I can start working on it.

Must have

2.1 As a user, I want to be notified when new relevant documents arrive in a

case I am working on, so that I can stay up to date on the progress of the

case.

Must have

2.2 As a user, I want to be notified when others approve or disapprove an item

that I have sent for approval, so that I know the status of the item.

Must have

2.3 As a user, I want to be notified when an item I am responsible for is

approaching a deadline, so that I can ensure it is completed on time.

Must have

2.4 As a user, I want to be notified when other users change the metadata on an

item I own, so that I can review the changes.

Must have

3 As a user, when online in Elements, I want new notifications to be added to

the notification list in real-time, so I can view these without having to reload

the page.

Must have

4 As a user, I want to see the number of unread notifications on the bell icon,

so that I can quickly get a view of how many notifications I haven't looked

at.

Must have

5 As a user, I want to be able to receive notifications through e-mail, so that

when I am offline in Elements, I can still be updated.

Must have

6 As a user, I want to be redirected to the relevant page when I click on a

notification, so that I don’t need to manually find the page myself.

Must have

7 As a user, I want to be able to subscribe to a specific case, so I can get

notified when changes in this occur.

Must have

8 As a user, I want to be able to unsubscribe from a specific case, so that when

I no longer need notifications regarding it, I can easily choose so.

Must have

9 As a user, I want to see when a notification was created, because it is an

important to know how long ago, I received it.

Must have

10 As a user, I want to clearly view what notifications are read and unread, so

that I have control over which notifications I have looked at or not.

Must have

11 As a user, I want notifications to be marked as read after clicking on it, so

that I can keep track of the notifications I have received and viewed in my

inbox.

Must have

12 As a user, I want to modify my overall notification settings to either send

notifications to Elements, to my e-mail, or both, so I can choose based on

my preference.

Must have

13 As a user, I want to modify my notification settings over types of

notifications, so that I for example can turn on notification of being assigned

to a case but don’t get notified when it is updated, so that I don’t have to do

this on all independent cases.

Must have

Page 62 of 70

14 As a user, I want to view all my notification settings in a central place, so

that I can easily modify them and won’t need to navigate to different pages

to do so.

Must have

15 As a user, I want to have the ability to manually mark a single notification as

read without opening the notification, so that when I know I don’t need to

investigate the notification, I can quickly check it as read.

Must have

16 As a user, I want to have the ability to manually mark a single read

notifications as unread, so that I can make it unread again if clicked by

accident or I did not have the time to “complete the task”/”read the

information" related to the notification.

Must have

17 As a user, I want to get feedback if the initial load of notifications is not

working, so I know why none of my notifications are visible in the log.

Must have

18 As a user, I want to get feedback if the real-time notification service

(SignalR server) is down, so I know that I won’t get new notifications

without reloading the page.

Must have

19 As a user, I want to get feedback if the notification component (micro

frontend) is not working, so I know why I can’t view my notifications.

Must have

Should Have

User Story MOSCOW

20 As a user, I want to mark all notifications as read, so that when I don’t need

to investigate all new notifications, I don’t need to click on all of them

individually.

Should Have

21 As a user, I want to get a periodic summary e-mail of notifications, so I my

inbox won’t get spammed with e-mails.

Should Have

22 As a user, I want to see an icon of the type of notification, so that I don’t

have to read through the notification to understand what type it regards.

Should Have

23 As a user, I want to have the ability to fine-tune my notification settings on

an individual case, to have more granular control over the information I

receive.

Should Have

24 As a user, I want to have the ability to change my e-mail notification

settings, so that I can choose when I receive them, to not be disturbed

outside working hours.

Should Have

25 As a user, I want the contents of the notification to mark out the most

important, so that it is easy to understand what the main contents of the

notification is.

Should Have

26 As a user, I want to be able to change the language to meet my preference,

so I understand what is written.

Should Have

27 As a user, I want to be able to filter between all and unread, so that I easily

get an overview of the notifications I haven’t looked at.

Should Have

28 As a user, I want to turn off all notifications for a set time interval so I can

better focus on my tasks.

Should Have

Page 63 of 70

29 As a user with administrative privileges, I want to control the notification

settings of a group I am responsible for, so that these can’t be changed by the

users and ensures that they receive the notifications they are supposed to.

Should Have

30 As a user with administrative privileges, I want to set the default notification

settings of a group I am responsible for, so that they have the same base

settings but can change them as they want.

Should Have

31 As a user, I want to be notified when something I have sent through digital

channels such as the post's 'Reply Out' service fails, so that I can take

appropriate action.

Should Have

32 As the owner of Elements, I want to push out notifications to all users of

critical information, so that they are aware of things that can affect the

Elements environment, such as updates and bugs under investigation.

Should Have

Could Have

User Story MOSCOW

33 As an administrator, I want the ability to push out custom notifications to all

users I’m responsible for, so that I can inform them of important information

regarding their work.

Could Have

34 As an administrator, I want the ability to push out custom notifications to

certain groups or users, so that I can inform them of important information

regarding their work.

Could Have

35 As a user, I want to find information on how to modify the notification

settings, because I often find it hard to get familiar with new technical

functionality.

Could Have

Won’t Have

User Story MOSCOW

36 As an administrator, I want to be able to generate reports about the

notifications (such as the number of notifications sent, the number of

recipients, and the types of notifications), so that I can monitor the system

behavior.

Won’t Have

Page 64 of 70

Appendix 6: User Survey Form

Page 65 of 70

Appendix 7: User Survey Result

Page 66 of 70

Page 67 of 70

Page 68 of 70

Page 69 of 70

Page 70 of 70

Appendix 8: Definition of Done (DoD)

Definition of Done

A PBI may be accepted as done if all the following expectations are met.

PBI requirements:

- Acceptance criteria from user stories (Given/When/Then)

- Needs to be estimated

- Additional information if necessary

Requirement to create Pull Request:

- Write/run tests

- Backend – Linting

- Specify if still in progress

- Pull down main

Pull Request reviewal:

- Read and look for code smells

- Run and read (review) tests

- Manual testing when applicable

Pull Request Completion:

- Minimum two approvals

- Squash commits

o Tag work item in commit

- Delete on completion (should be on)

- Work item completion should not be on

	Abstract
	Preface
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	1. Introduction
	1.1. Definitions
	1.2. Sikri
	1.3. Team
	1.4. Current Situation
	1.5. Project
	1.6. Goals and Ambitions

	2. Project management
	2.1. Methodology
	2.2. Definition of Quality
	2.3. Process Quality
	2.4. Product Quality

	3. Analysis
	3.1. Data Collection
	3.1.1. Domain Knowledge Gathering
	3.1.2. User Survey

	3.2. System Requirements
	3.2.1. System Definition
	3.2.2. User Stories

	4. Technology and tools
	4.1. Azure DevOps
	4.1.1. Azure Boards
	4.1.2. Retrospective and Team Assessment
	4.1.3. Git Version Control
	4.1.4. Azure Pipelines

	4.2. Frontend
	4.2.1. Language and Framework
	4.2.2. Testing Frontend

	4.3. Backend
	4.3.1. Language and Framework
	4.3.2. Database
	4.3.3. Testing Backend

	5. Architectural Design
	5.1. Architecture Design Criteria
	5.1.1. Very Important
	5.1.2. Important
	5.1.3. Less Important
	5.1.4. Easily Fulfilled

	5.2. Architectural Model
	5.2.1. Example Flow of a Notification

	5.3. Database Design

	6. Project Execution
	6.1. Project Start
	6.2. Development
	6.2.1. Sprint 1 (26.01 – 03.02)
	6.2.2. Sprint 2 (06.02 – 17.02)
	6.2.3. Sprint 3 (20.02 – 03.03)
	6.2.4. Sprint 4 (06.03 – 17.03)
	6.2.5. Sprint 5 (20.03 – 31.03)
	6.2.6. Sprint 6 (03.04 – 14.04)
	6.2.7. Sprint 7 (17.04 – 28.04)

	6.3. Project Close

	7. Final Product
	7.1. Functionality
	7.2. Facilitating Further Development

	8. Reflection
	8.1. Process and methods
	8.1.1. Methodology
	8.1.2. Local Development Environment
	8.1.3. Processes
	8.1.4. Estimation and Time Tracking for Product Backlog Items (PBIs)
	8.1.5. Usage of a Separate “main” Branch Frontend

	8.2. Product Decisions
	8.2.1. Prioritization of Functionality
	8.2.2. Message Design
	8.2.3. SignalR
	8.2.4. Pagination
	8.2.5. Subscription
	8.2.6. Linking
	8.2.7. User Interface and Design

	9. Conclusion
	References
	Appendix
	Appendix 1: Statement from Sikri
	Appendix 2: Team Evaluation
	Aleksander
	Hermann
	Bjørnar
	Kristoffer
	Lars

	Appendix 3: Group Contract
	Appendix 4: Risk Analysis
	9.1.
	Appendix 5: User Stories
	Must Have
	Should Have
	Could Have
	Won’t Have

	Appendix 6: User Survey Form
	Appendix 7: User Survey Result
	Appendix 8: Definition of Done (DoD)

