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Outline

- Nonlinear damping in dynamic (motion) systems 

- Optimal nonlinear damping control for 2nd order systems
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Starting from simple…  
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▪ Actuator model as a second-order linear system 

▪ Example of a real physical (actuator) system
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Starting from simple…, cont.  

90 arcsece =
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Starting from simple…, cont.  

▪ Second-order (damped) oscillating dynamics, when linear… 
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▪ Free/eigen response 

(cf. with hardening k)
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Linear: k = 40

Nichtlinear: k(x) = 40 + 0.4 x
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▪ More general nonlinear response
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Nichtlinearer Ansatz

Linearer Ansatzt
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Starting from simple…, cont.  

▪ Impact on the equilibrium (cf. linear & nonlinear in phase-plane) 

Linear system Nonlinear system

with memory
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Starting from simple…, cont.  

▪ Stiffness-damping structures 
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Motivating practical observations  

▪ Nonlinear stiffness and nonlinear stiffness coupled with damping   

Elastomer decoupling unit 

from active antiroll bar 

(measurements)
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Gears with elasticities and 

coupling in motor-drive systems 

(measurements) 
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Motivating practical observations, cont.  

▪ Nonlinear frictional damping   u
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RBS (|u|=10) RBS (|u|=1) RBS (|u|=0.1)
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Theoretical analysis of the dynamic behavior of hysteresis elements in mechanical systems, 

F. Al-Bender, W. Symens, J. Swevers, H. Van Brussel, Int. J. of Non-Linear Mechanics, 2004 

▪ Some measured amplitude-dependent FRFs    

Frequency domain identification of dynamic friction model parameters, 

R.H.A. Hensen; M. van de Molengraft; M. Steinbuch, IEEE Trans. on Con. Sys. Tech., 2002 
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Motivating practical observations, cont.  
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Motivating practical observations, cont.  
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▪ Motion trajectories with uncertain and nonlinear damping    
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Motivating practical observations, cont.  

▪ Convergence is vicinity to the motion stop

Linear (viscous) friction damping Dahl friction LuGre friction

▪ More advanced (rheology-based) friction, e.g. Prandtl-Ishlinskii type     
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Nonlinear damping by Prandtl-Ishlinskii operator  

▪ Prandtl-Ishlinskii (PI) model  Maxwell-slip (MS) model

Presliding hysteresis damping of LuGre and Maxwell-slip friction models,                                        

M Ruderman, Mechatronics 30, pp. 225-230, 2015
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Nonlinear damping by PI operator, cont.  

▪ First, consider motion dynamics with only one i-th PI-element
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Nonlinear damping by PI operator, cont.  

▪ Motion dynamics with entire PI operator (N elements, evt. N→)

upon reversals
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It appears the initial 

stiffness at motion 

reversals is crucial for 

pre-sliding damping   
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Nonlinear damping by PI operator, cont.  

▪ Initial contact stiffness crucial for damping at motion reversals

Infinite initial stiffness at motion reversals  

• constant damping rate (bound. case) → Coulomb  

• zero damping rate (bound. case) → limit cycle 

• varying (hysteresis) damping rate

Convergence after reversal  
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Dissipation by counterclockwise hysteresis  

▪ Preisach operator of hysteresis relay



y

x

▪ Linear versus Preisach hysteresis transducer

Linear gain (spring, Hooke's law) Counterclockwise (CCW) hysteresis
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Considering power of the input-output pair and then integrating over time  

Dissipation by CCW hysteresis, cont.  

Linear gain (spring, Hooke's law)

▪ Energy at input cycles
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Dissipation by CCW hysteresis, cont.  

▪ Preisach operator as feedforward rate-independent damping
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▪ Transducer examples: MSM Piezoelectric
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Dissipation by clockwise hysteresis  

▪ Nonlinear damping in feedback path of system dynamics 

 

Actuator with 

integrated gear and 

motor encoder 

External precise 

load encoder 

Inertial disc with 

gravity load 
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Dissipation by CW hysteresis, cont.  

▪ Auxiliary nonlinear (structural) damping in elastic joints

Linear joint (4th order system) Hysteretic joint (4th order system)
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Dissipation by CW hysteresis, cont.  

If there is no hysteresis in    

Changes in energy level between two operational points
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Dissipation by CW hysteresis, cont.  

▪ All hysteresis maps (non-zero area upon reversal) are dissipative 
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Dissipation by CW hysteresis, cont.  

▪ Locally stabilizing behavior of CW hysteresis in the loop 

When adding hysteresis to 

the linear spring, local 

stabilization (depending on 

initial conditions) implies 
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Concluding remarks  

▪ Energy losses in motion systems 

▪ Time- and/or state-varying system damping 

▪ Damping ratios: exponential; constant; something else…    
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Thank you for attention
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Abstract  
 
Damping is a natural way to extract energy from an autonomous, to say isolated, dynamic system. 
Physically it means an irreversible dissipation process, mostly through heat transfer, while in the 
control systems it is inherently associated with stabilization of the state solutions, correspondingly 
convergence to a stable equilibrium. Nonlinear damping is relevant but, at the same time, not trivial 
for both – analysis and modeling of the dynamic systems and controller synthesis for their efficient 
regulation. This talk, devoted to nonlinear damping, will consist of two parts. In the first one, we will 
analyze some nonlinear damping phenomena, while focusing on rate-independent (sometimes called 
structural or hysteresis) damping and discussing dissipation power, local stabilizing properties, and 
invariant sets of equilibria. The second part of the talk will discuss nonlinear damping in the feedback 
control, with focus on the phase-plane analysis of solution trajectories. A novel nonlinear damping 
control with optimal convergence without transient overshoot will also be illustrated in detail. 
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