

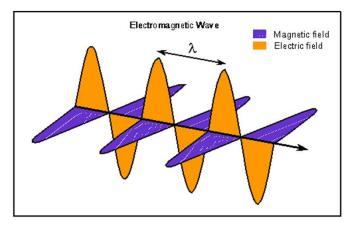
Robustly estimating and compensating uncertain oscillatory output

Michael Ruderman

michael.ruderman@uia.no

25.04.2024 **Guest seminar** Loughborough University

• Robust frequency estimation

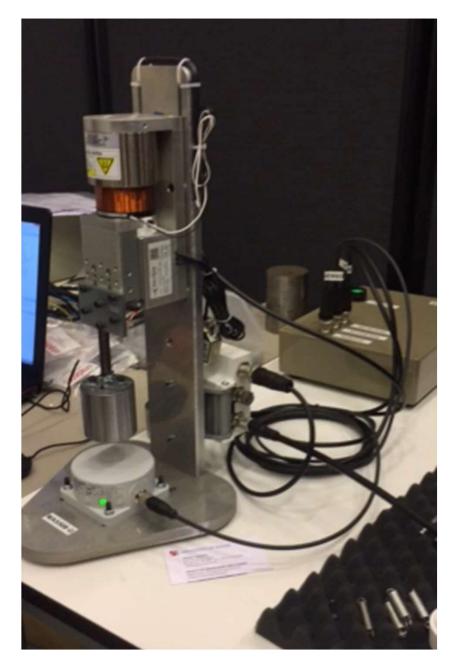


Measurement, analysis, monitoring of oscillatory quantities in almost all types of the systems: mechanical vibrations, electric & power signals, electromagnetic waves, bio-medical signals

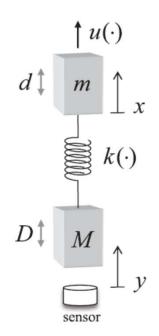
General issues with oscillatory output signals: bias, noise, time-varying parameters $y(t) = Y_0 + Y(t) \sin(\omega(t) \cdot t + \varphi) + \eta(t)$

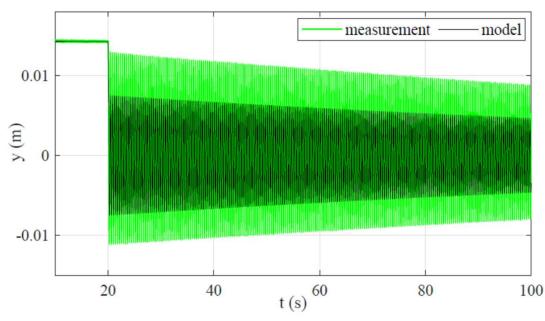
ref. [5]

Numerous approaches from last three decades (including various PLLs), also the global estimator



Two-mass actuator-load system (anno 2020) for oscillations analysis & control prototyping





Robust frequency estimation

Robust estimator: background

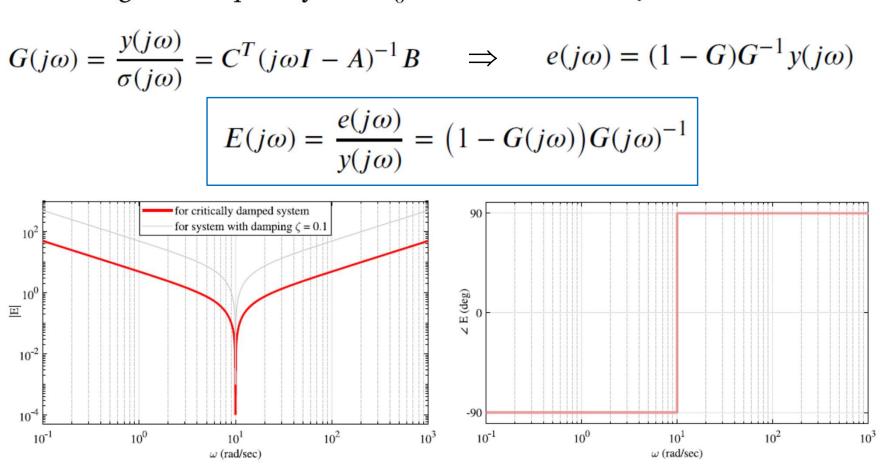
- One-parameter robust frequency estimator [1], motivated by [5], for noisy harmonic signals with a slowly-varying amplitude $\sigma(t) = k(t) \sin(\omega_0 t) + \eta(t)$ eq. (1)
 - ✓ Amplitude variations are slow (comparing to ω_0), and k appears as a 'frozen' term in analysis
 - ✓ Measurement noise is zero-mean with a constant power spectral density (PSD), i.e. white-noise $PSD\{\eta(\omega)\} = \text{const} \equiv p$
- Original global frequency estimator [4], [5] (adaptive notch filter) $\ddot{x}(t) + 2\zeta\theta\dot{x}(t) + \theta^2 x(t) = \theta^2 \sigma(t), \qquad \dot{\theta} = -\gamma x(t) \left(\theta^2 \sigma(t) - 2\zeta\theta\dot{x}(t)\right)$

Robust estimator: structure and I/O properties

• One-parameter robust frequency estimator [1], eqs. (4)-(6)

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\theta^2 & -2\theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2\theta \end{bmatrix} \sigma, \quad y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad \dot{\theta} = -\gamma \operatorname{sign}(x_1)(\sigma - \gamma)$$

at the angular frequency $\theta = \omega_0 \qquad \Rightarrow \qquad e = \sigma - y \rightarrow 0$



Theorem 1. The frequency estimator (4)–(6) is global for (1) and converges asymptotically as $\theta(t) \rightarrow \omega_0$ for $t \rightarrow \infty$, regardless of the $\theta(0) > 0$ initialization, provided the small adaptation gains $\gamma > 0$ and slowly varying amplitudes k(t). The frequency-estimation error $\varepsilon(t) = \omega_0 - \theta(t)$ converges uniformly and exponentially in terms of

$$\left|\varepsilon(t_2)\right| < \alpha \left|\varepsilon(t_1)\right| \exp\left(-\beta(t_2 - t_1)\right)$$
(9)

for some $\alpha > 0$ and $\forall t_2 > t_1$. The exponential rate of convergence is independent of $\eta(t)$ noise and as follows:

$$\beta = 0.5 \gamma k \omega_0^{-1} + \delta,$$
 (10)

where δ is a small positive constant independent of γ , k, ω_0 .

• Sketch of the proof (for more details see [1])

Let $0 < \theta(0) < \omega_0$ be an arbitrary initialization

$$y(t) = b \sin(\omega_0 t + c) \quad \text{where } b = k \left| G(j\omega_0) \right|$$

$$\Rightarrow x_1(t) = -\frac{b}{\omega_0} \cos(\omega_0 t + c) = -\frac{b}{\omega_0} \sin(\omega_0 t + c + \pi/2)$$

$$\Rightarrow e(t) = a \sin(\omega_0 t + c + \pi/2) \quad \text{where } a = b |E(j\omega_0)|$$

$$\hat{\theta} = \gamma k \left| G(j\omega_0) \right| \left| \frac{1 - G(j\omega_0)}{G(j\omega_0)} \right| \left| \sin(\omega_0 t + c + \pi/2) \right|$$
It can be seen that for all $\gamma, k > 0$ the sign($\hat{\theta}$) = +1 as long as $\theta(t) < \omega_0$

$$\left| G(j\omega_0) \right| \left| \frac{1 - G(j\omega_0)}{G(j\omega_0)} \right| = \frac{\left| \hat{\theta}^2 - \omega_0^2 \right|}{\theta^2 + \omega_0^2} \equiv \Omega(\theta)$$

$$\hat{\theta}(t) = -\theta\omega_0^{-1} + 1 \quad \Rightarrow \quad \hat{\theta}^* = 0.5 \gamma k \left(-\theta^* \omega_0^{-1} + 1 \right) \quad \Rightarrow \quad \hat{\theta}(t) + 0.5 \gamma k \omega_0^{-1} \theta(t) = 0.5 \gamma k \omega_0^{-1} \cdot \omega_0$$

25.04.2024 / Loughborough University / M Ruderman

UNIVERSITETET I AGDER

 Optimality without damping parameter (i.e. for ζ=1)

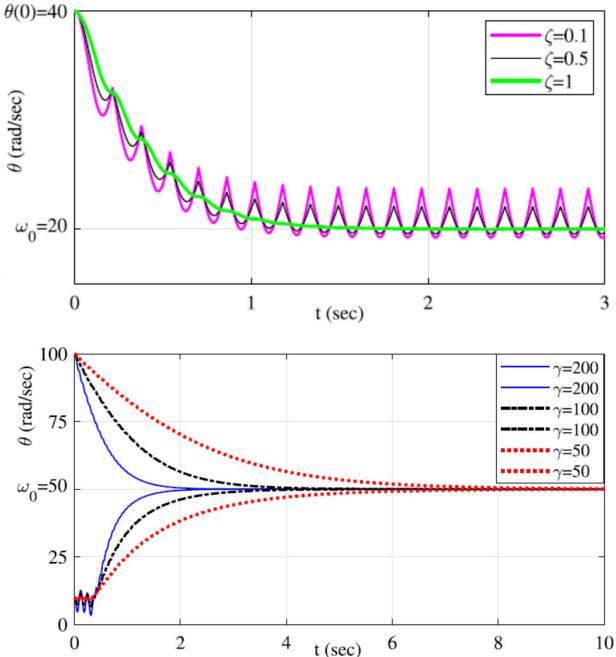
estimator (
$$\gamma = 100$$
, $\omega_0 = 20$ rad/s)

Convergence speed for various adaption gains γ

estimator

$$\omega_0 = 50 \text{ rad/s for } \sigma(t) = \sin(\omega_0 t)$$

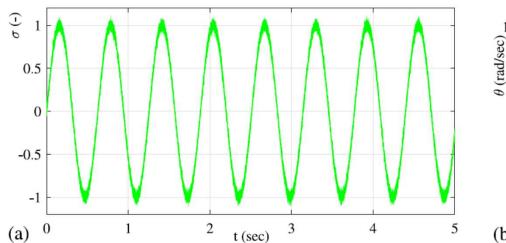
 $\gamma = \{200, 100, 50\}$

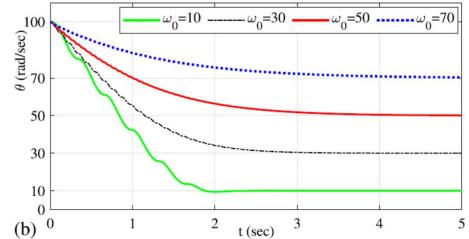


UNIVERSITETET I AGDER

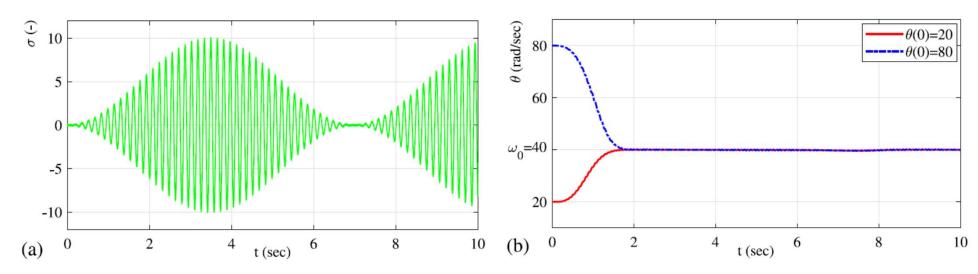
Robust estimator: numerical examples

• Noisy signal, constant amplitude, various frequencies



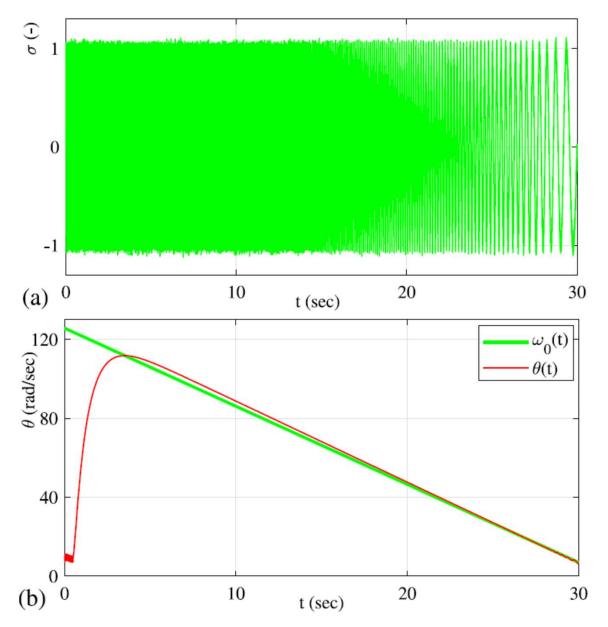


• Noisy signal, time-varying amplitude



Robust estimator: numerical examples (cont.)

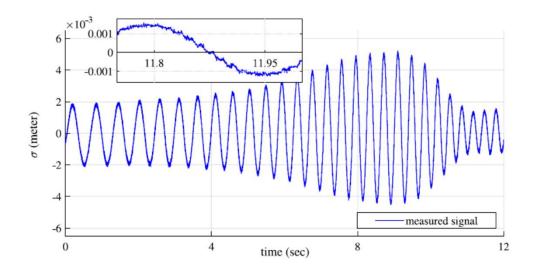
• Noisy signal, time-varying frequency (down-chirp signal)

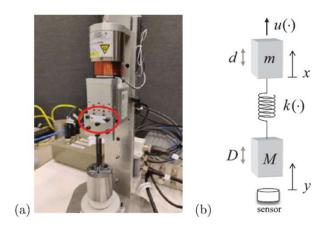


UNIVERSITETET I AGDER

UNIVERSITETET I AGDER Robust estimator: experimental benchmarking

• Noisy & biased signal with time-varying amplitude & frequency





• Comparison with the original global estimator [4]

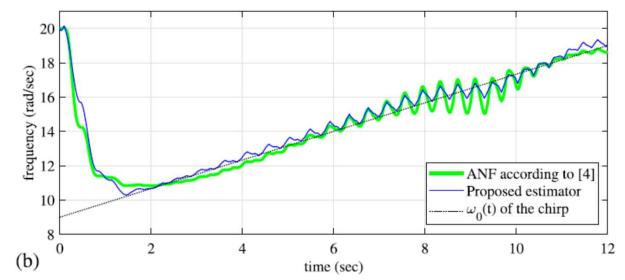
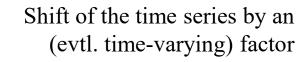


Table 1Estimators' evaluation setting.Set parameterANF according to [4]Proposed estimator $\theta(0)$ (rad/s)2020 γ 4e42e4 ζ {0.7, 1, 1.3}{0.7, 1, 1.3}

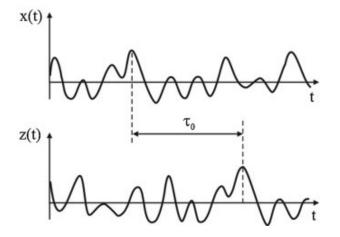
(Adaptive) time delay-based compensation

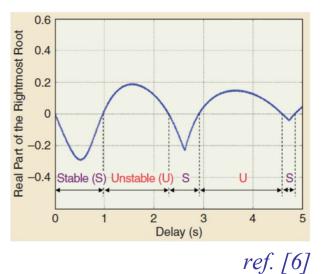
Motivation for using time delay

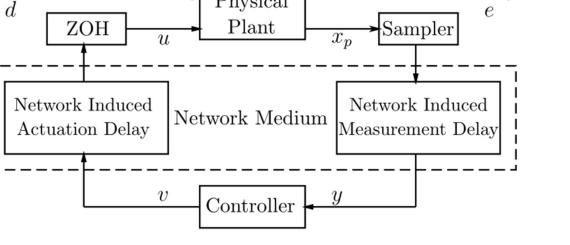
UNIVERSITETET I AGDER



$$y(t) = x(t - \tau_0)$$
$$\tilde{G}(s) = G(s) \exp(-s\tau_0)$$

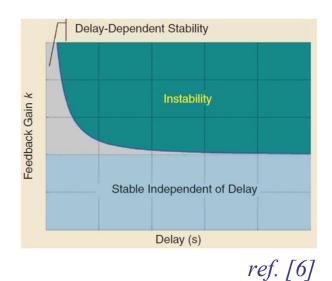






Physical

Usually, source of instability in feedback control systems \Rightarrow need for careful analysis and robust control design



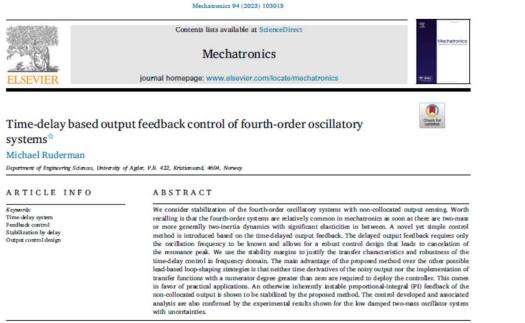
$$\arg\left[\exp(-j\omega\tau_0)\right] = -\omega\tau_0$$

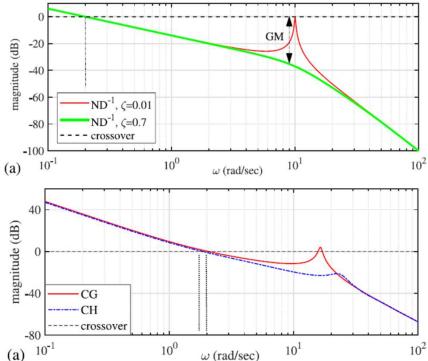
However, purposefully inserted time delays can be used for stabilization

 $u = f\left(x(t), x(t-T)\right)$

UNIVERSITETET I AGDER Time delay-based output feedback compensator

• Original approach, initially anno 2021 [7], and elaborated in [2]



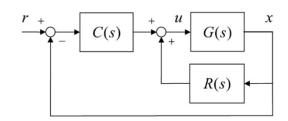


Research questions:

- □ Robust stabilization of non-collocated passive load
- $\Box Use of output feedback only \Rightarrow time-delay based control$

$$C(s)G(s) = K_p \frac{s + K_i K_p^{-1}}{s} \cdot \frac{N(s)}{D(s)} \quad \text{versus} \quad C(s)H(s) = \frac{C(s)N(s)}{D(s) + R(s)N(s)}$$
$$R(s) = K_d \left(\exp(-sT) - 1\right) \quad \text{with} \quad T = -\left[\arg G(j\omega_0)\right]\omega_0^{-1}$$

Proposed (plug-in) time-delay based compensator (*R*) scheme



Experimental evaluation

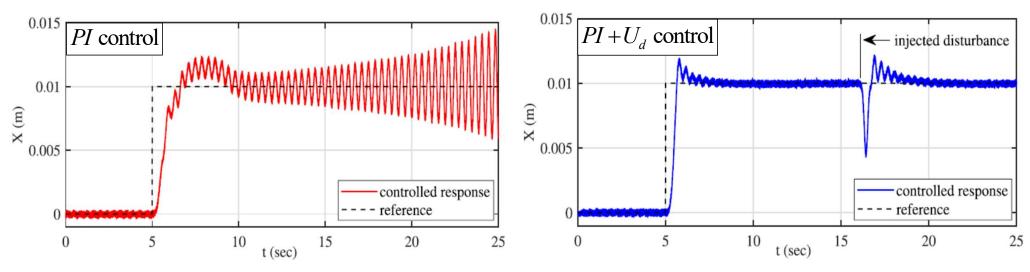
10

t (sec)

Low-damped oscillatory non-collocated passive load

voice-coil-motor	$f \leftarrow \begin{matrix} k, \zeta \leftarrow \\ M \end{matrix}$ max min M				0.02 0.01	
	Parameter	Unit	Value	Meaning	0	
connecting spring passive load remote sensor	$egin{array}{c} \mathbf{m}_1 & & \ \mathbf{m}_2 & & \ \mathbf{k} & & \ \sigma & & \ \delta & & \ \mathbf{R} & & \ arphi & & \ \mathbf{g} & & \ \end{array}$	kg N/m kg/s kg/s V/A V s/m m/s ²	0.6 0.75 200 200 0.01 5.23 17.16 9.81	Actuator mass Load mass Spring constant Actuator damping Spring damping Coil resistance EMF constant Gravity constant	-0.01	5

• PI feedback control versus PI + time-delay based compensator (U_d)



open-loop response

20

25

Experimental evaluation (movies)

• Free-fall (uncontrolled)

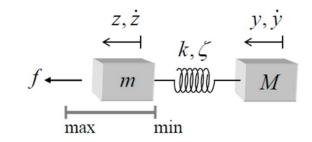
• PI + time-delay based

• PI control

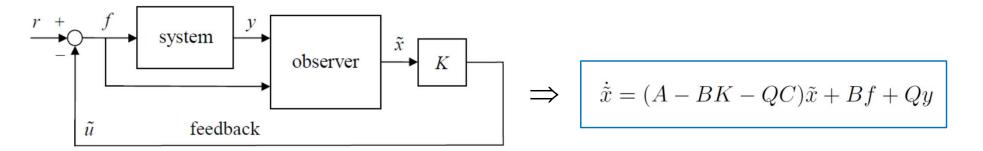
Why not observer-based compensation?

• When using state-feedback with observer

$$x \equiv (x_1, x_2, x_3, x_4)^\top = (\dot{z}, z, \dot{y}, y)^\top$$
$$\dot{x} = Ax + Bf + D,$$
$$y = Cx, \qquad \Rightarrow \quad G(s) = C(sI - A)^{-1}B$$



$$e(t) = x(t) - \tilde{x}(t) \qquad \implies \dot{e}(t) = \tilde{A}e(t) = (A - QC)e(t)$$



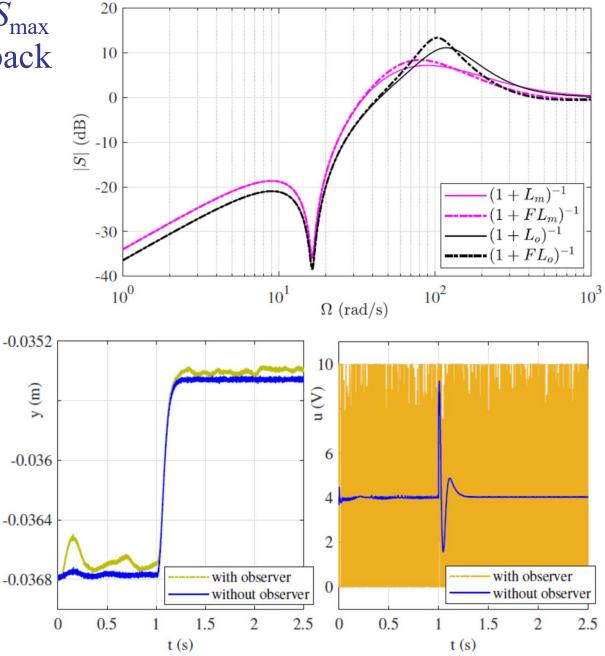
• Consider additional (practical) stability features, see [3] loop transfer function from r(s) to $\tilde{u}(s) = K(sI - A + BK + QC)^{-1}[BQ] \begin{bmatrix} 1\\G(s) \end{bmatrix}$

$$S_{\max} = \max_{\Omega} \left| S(i\Omega) \right| = \max_{\Omega} \left| \left(1 + L(i\Omega) \right)^{-1} \right|$$

UNIVERSITETET I AGDER

• Low 'stability margin' S_{max} of observer-based feedback

 As consequence – unfeasible control behavior (even in the numerical simulations)



• Time-delay based feedback control [2] can be online tuned (i.e. be adaptive) by the robust frequency estimator [1], as shown in [3]

$$w(t) = y(t) - y\left(t - \frac{\pi}{\beta}\right), \quad \omega < \beta < 3\omega, \qquad (17)$$

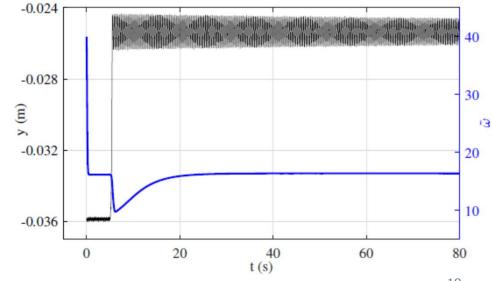
where β is a free adjustable time-delay parameter. Assuming a biased (by Y_0) harmonic oscillation

$$y(t) = Y_0 + Y \sin(\omega t + \phi), \qquad (18)$$

and substituting it into (17) results in

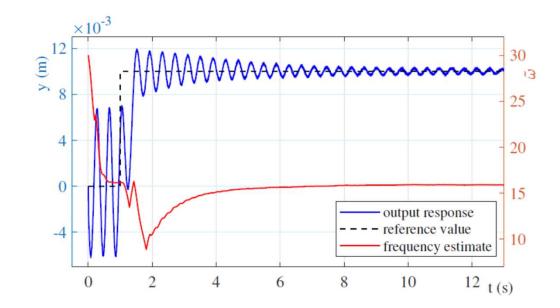
$$w(t) = Y\left(\sin\left(\omega t + \phi\right) - \sin\left(\omega t + \phi - \omega\frac{\pi}{\beta}\right)\right).$$
(19)

 Converging oscillations frequency, even in presence of stepwise transients (here experiments)

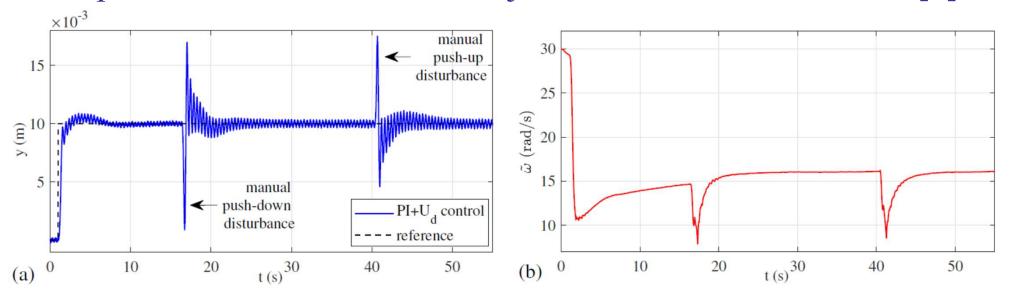


I UNIVERSITETET LAGDER Adaptive extension of delay-based control (cont.)

• Experimental evaluation for oscillatory initial conditions



• Experimental evaluation with injected external disturbances, [3]



Previous related works and references

- 1. One-parameter robust global frequency estimator for slow-varying amplitude and noisy oscillations. M Ruderman. Mechanical Systems and Signal Processing, 170, pp. 108756, 2022
- 2. Time-delay based output feedback control of fourth-order oscillatory systems. M Ruderman. Mechatronics, 94, pp. 103015, 2023
- 3. Adaptive time delay based control of non-collocated oscillatory systems. M Ruderman. arXiv:2311.14979, <u>http://arxiv.org/abs/2311.14979</u>, 2023, to appear in IEEE MED, 2024
- 4. An adaptive notch filter for frequency estimation of a periodic signal. M. Mojiri, A.R. Bakhshai. IEEE Transactions on Automatic Control, 49 (2), pp. 314–318, 2004
- 5. A globally convergent frequency estimator. L. Hsu, R. Ortega, G. Damm. IEEE Transactions on Automatic Control, 44 (4), pp. 698–713, 1999
- 6. Stability and stabilization of systems with time delay. R. Sipahi, S.I. Niculescu, C.T. Abdallah, W. Michiels, K. Gu. IEEE Control Systems Magazine, 31(1), pp.38–65, 2011
- 7. Robust output feedback control of non-collocated low-damped oscillating load. M. Ruderman. In IEEE 29th Mediterranean Conference on Control and Automation (MED), pp. 639–644, 2021

Thank you for attention