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• Recommended textbooks

 Feedback control theory. J.C. Doyle, B.A. Francis, A.R. Tannenbaum.   
2009, Dover

 Feedback control of dynamic systems. G.F. Franklin, J. Powell,             
A.F. Emami-Naeini. 2015, Pearson

 Robot Modeling and Control. M.W. Spong,  S. Hutchinson,  M. Vidyasagar. 
2006, John Wiley & Sons 

 Feedback systems: an introduction for scientists and engineers.                 
K.J. Åström,  R.M. Murray. 2010, Princeton

 A linear systems primer. P.J. Antsaklis, A.N. Michel. 2007, Birkhäuser
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Introduction to feedback control systems
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• Why do we need a feedback?  

Funny Example 1

we want to take a bath (actually, what we want is to fill a water level) 

with or without 
feedback?
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Let assume: ( )

( )
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Funny Example 1

we want to take a bath (actually, what we want is to fill water level), cont. 

rate at which the water flows into the bath (what we can control)

instantaneous level of water in the bath (what we are interested in)

volume of water in the bath, and total mass (current state) 

cross-section area of the bath, and density of the fluid (i.e. water) 

desired level of the water (which is our goal, i.e. what we want)  

“intensity” of controlling the water flow (i.e. control gain)

Simplified “physics” of filling the bath:  ( ) ( ) ,V t Ah t ( )
( )

dV t
m u t

dt
 

How we control inflow (i.e. adjust the inflow valve):   
control error

( ) ( )u t K H h t 
Resulted controlled (!) dynamical (!) behavior of the system:   

 

solution for output

( )
( ) ( ) ( ) 1 exp

dh t K
A K H h t KH Kh t h t H t

dt A



  

         
  
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Simplified “physics” of the car’s motion  

( )
( ) ( ) ( )

dv t
F m b v t R t t

dt
   

Which feedback controller to use?  

 ( ) ( ) ( )
desired measured

t V t v t
 

   
 

??

vV

R



Less funny Example 2

we want to ride a car (actually, what we want is to ride it without accidents) 
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Less funny Example 2

we want to ride a car (actually, what we want is to ride it without accidents), cont. 

First trial: let’s take a proportional (P) controller  

   ( )
( ) ( ) ( ) ( ) ( ) ( )p p p

dv t
t K V t v t m b K v t R t K V t

dt
       

For steady-state (s.s.), we apply the final value theorem, set all derivatives to zero   

. .

1 1
for 0 0p

s s
p p p p

b Kd b
v R V e V v v R

dt K K K K


        

Second trial: let’s take a proportional-integral (PI) controller  

   ( ) ( ) ( ) ( ) ( )p it K V t v t K V t v t dt    
Differentiate both sides of ODE and take the final values, if       const, constV R 

     . .

0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) 0p i p i s sm v t b K v t K v t R t K V t K V t e V v
   

          
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• Feedforward versus feedback control  

Now, let’s measure the output of interest and compare it with what we want!     

source: [1]
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Example 3

we want a variable motor speed (actually, also accurate & load-independent) 

without feedback    

with feedback    

source: [1]
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• Feedback control is not new!  

Maybe the first industrial application of a feedback control system:  

Watt’s flyball governor 

source: [3]

see [2]
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source [1]

source [4]
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Simple (everyday) Example 4

room temperature control with thermostat

source: [4]
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• Usual notations in feedback control systems  
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• Difference between manual & automatic (feedback) control 

For automatic control:     

 measured behavior/output is prerequisite for  a feedback
strategy

 control law  is a 
function

prerequisite for 
  
 
  

automatic
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• Computer-/processor-controlled feedback system  

We will next always assume continuous time domain (0 )samplingT t 
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• Why control is as important for robotics and mechatronics? 
(some motivating movies)   
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• Why control is as important for robotics and mechatronics? cont. 
(some motivating movies)   
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• Why control is as important for robotics and mechatronics? cont. 
(some motivating movies)   
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• Why control is as important for robotics and mechatronics? cont.

source: [5]
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• Requirements and criteria for feedback control     

 Stability (!)   

Internal stability: if for all initial conditions and all bounded signals
injected at any place in the system all states remain also bounded   

 Sufficient reference tracking & disturbance rejection  

 Small (towards zero) residual (steady-state) error   

 Fast transient response, i.e. control bandwidth is large enough    

 Robustness (against uncertain parameters / unmodeled dynamics)    

( )K s
 

( )G s
 

overall 
control   

overall system under 
control (actuator, plant, 

sensor, etc.)   

r e y

d
n

u

( )
( ) ( ), 0

( )

y s
y s r s

d s
 

max( )
t T

e t E





page 22 of 245Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics 

• Why control stability is so important? 

source: [6]
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• Why control stability is so important? cont. 

source: [4]
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• Why control stability is so important? cont. 

Stability in Lyapunov sense Asymptotic stability in Lyapunov sense

Also for the period solutions (i.e. trajectories), so-called limit cycles  

source: [7]
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• Why control stability is so important? cont. 

source: [7]

 Free ball in the gravity field

 Ball with an energy source leaving the gravity field
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• Why control stability is so important? cont. 

stable for K < stiffness k unstable for K > stiffness k

k

source: [8]

Example 5
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source: [9]

• Issues in control system design and synthesis problem 
by Doyle, Francis, and Tannenbaum, 1992  

The process of designing a control system generally involves many steps.                        
A typical scenario is as follows:

1. Study the system to be controlled and decide what types of sensors and actuators 
will be used and where they will be placed.

2. Model the resulting system to be controlled.
3. Simplify the model if necessary, so that it is tractable.
4. Analyze the resulting model; determine its properties.
5. Decide on performance specifications.
6. Decide on the type of controller to be used.
7. Design a controller to meet the specs, if possible; if not, modify the specs or 

generalize the type of controller sought.
8. Simulate the resulting controlled system, either on a computer or in a pilot plant.
9. Repeat from step 1 if necessary.
10. Choose hardware and software and implement the controller.
11. Tune the controller on-line if necessary.
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source: [9]

The synthesis problem can be stated as follows: Given a set of generalized 
plants, a set of exogenous inputs w, and an upper bound on the size of z, design 
an implementable controller y  u to achieve this bound. How the size of z is 
to be measured (e.g., power or maximum amplitude) depends on the context.

• Issues in control system design and synthesis problem, cont. 
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Consider Example 2 (from page 7)

For the given car’s dynamics  

( )
( ) ( ) ( )

dv t
m bv t R t t

dt
  

assume the following parameter constants   

1. Design a simple PI velocity controller and implement the closed-loop control 
system (either in Matlab or Simulink). Show the step response.

2. Show what happens with a step response of the control system without the 
integral control part, i.e. Ki=0.

3. How will the step response without integral control part change, if there is no 
inclination road disturbance acting on the car, i.e. R(t)=0.      

• Practical (hand on) session 1 

1000, 400m b 

and the disturbance value     
0 for 0 30 sec

( )
15000 for 30 sec

t
R t

t

 
  
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Control-oriented modeling
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• Domain of knowledge in mechatronics and robotics 
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• Which modeling approach for dynamic systems?  

source: [10]
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• Which level of detail do we need?   

Physical (white-box) models

+ detailed (prime) system knowledge
- requires domain-specific theories
- not easy to handle (part. diff. equations) 

Mathematical models

+ universal mathematical formalism 
- several (vague) a-priory assumptions
- no direct physical interpretation  

x = Ax + Bu
( ) ( 1)

1 ...n n
ny a y 
 

i. Use general and domain-specific knowledge to derive the system structure

ii. Use decomposition into sub-systems to detect forward and feedback couplings

iii. Use measurements (much as possible) to evaluate dynamics and steady-states

• “Mixture” from both for a control-oriented modeling   
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• How do we model input-output systems in the loop?  

u Process / Plant 


Physical system  

y

Control system

Actuator Sensor

Reference value

given physical setting  

technical setting to be designed    

 Representation of the system elements by the transfer-blocks 


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r

( , , )
( , )

f v t
y h t



x x
x



( , )u g e t

1

( ) /
PT

t 

y

e

v

 Generic view of dynamics: with nonlinear equations and delays     

1

( ) /
PT

t 



• How do we model input-output systems in the loop? cont.  
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r

( )
1 0

( )
1 0

n

m
m

y a y a y
b u b u b u

   
   




y

u

( )

1 0

k
k

i

u c e

c e c e c edt

 
   


 e

 Generic view of linear dynamics: with standard ODEs    



• How do we model input-output systems in the loop? cont.  
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• How to perform linearization?  
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• How to perform linearization? cont.  
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Illustrative Example 6

(gravity pendulum)    

Linearizing around working point w = 0 (rad): 

0
sin

w
 


 

2 0 2 1 01 wit0 h , ,a ml aa a kl a mga        

Linearizing around working point w = /2 (rad): 

/2
sin 1

w 



 

2 1 2 1with , , consco tnst a ml a kl mg disturbaa nca e        

• How to perform linearization? cont.  

source: [11]
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 Generic class of nonlinear dynamic systems  (here SISO) 

 Use Taylor expansion for linearization

• State-space model via linearization 

1

( , ),
( , ), , , .n

x f x u
y g x u u y x  

=
 

0 0 0 0

0 0 . . .
, ,

h o t
x u x u

f f
x x x u u f

x u

              
=

0 0 0 0

0 0 . . .
, ,

h o t
x u x u

g g
y x x u u g

x u

              
=

0 0

with working point movable 
into origin: x 0, 0,
and higher order terms ( . . .)
which are neglected

u
h o t

 

 Matrix/vector form, i.e. Jacobian matrices

1 1 1 2 1

2 1 2

1 2

/ / /

/ /

/ / /

n

n

n n n n

f x f x f x

f x f x

f x f x f x

      
       
 
 
      

f
A

x


 

   


1

2

/

/

/n

f u

f u

u

f u

  
     
 
 
  

f
B


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: matrices with system parameters

1 2

,T

n

g g g g

x x x

    
       

C
x



• General form of state-space model for MIMO systems  

; if  is stictly proper 0
g

u


   


D D

x = Ax + Bu
y = Cx + Du
 ( )

( )
( )

n

r

m

t
t
t





x
u
y





, , ,n n n r m n m r      A B C D   

: vector of system states 

: vector of input values

: vector of output values

• State-space model via linearization, cont. 
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• Linearization analysis for ‘small-signals’   

Linear state-space model (SISO) to be derived

Generalized nonlinear system (SISO)

First, determine equilibrium values (in the operation point)              such that 

Then, consider small-signal perturbations from that equilibrium

Then, the dynamics is approximated by

Linearized dynamics around the equilibrium point 

ux = Ax + B
( , )ux = f x

0 ( , )o o ou x f x
,o oux

,o ou u u    x x x

( , )o o ou u     x x f x A x B 
, ,o o o ou uu

            x x

f f
A B

x

u   x A x B
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• Example 7: linearization of actuated pendulum    



m

l
cT

: equation of motion (without damping)

Introducing and



Equilibrium with zero input (i.e. u0=0) 



Linearized 
dynamics
(at 0 and )

2
sin cTg

l ml
  

 1 2, ,
TT

x x     


0 2
, cTg

u
l ml

  

2 1
2
0 1 2

( , )
( , )

sin ( , )

x f u
u

x u f u
   

         

x
x f x

x


1

2

0,

sin 0

x
g

x
l



 

 

   




 0 0 0

0

0 , 0

0,

T
u

 
 


x

0 0

1 1

1 2

2
0 02 2

1 2 ,

0 1

cos 0

u

f f

x x

f f

x x

 

  
            
   x

A

0 0

1

2

,

0

1

u

f

u
f

u

 
          
   x

B
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( )
1 0

( )
1 0

n

m
m

y a y a y
b u b u b u

   
   




o Superposition principle in LTI input-output systems  

o Tunable parameters from the response in both, time- and frequency-domain   

• Advantage of linear time invariant (LTI) systems identification
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• Example of real applications: joint (q and ) with elasticities  

source: [12]
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• Example of real applications: hydraulic cylinder of a crane

source: [13]
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• Example of real applications: DC motor velocity and current  

source: [14]
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

L

e

di
L R i u

dt

d
J B i

d
M

t



 

   

   


Linear dynamic system model 

• Dynamic system of 2nd order  

 2 2

( )

( )

s

u s LJ s JR BL s BR

 
 

   

Direct current (DC) motor 
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i. No power-electronics, correspondingly no PWM and no circuits dynamics

ii. Constant, correspondingly uniform, magneto-mechanical coupling (Ψ) 

iii. Linear viscous damping only (i.e. no torque ripples, no Coulomb friction) 

Relevant assumptions to be made:    

source: [15]

• Dynamic system of 2nd order, cont.  
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• Dynamic system of 3rd order  

Orifice equations of the valve 

source: [16]

Continuity equations of fluid in hydraulic circuits 

Static input nonlinearity of the valve 
( )z h v

Valve controlled hydraulic cylinder 
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• Dynamic system of 3rd order, cont.  

0

2

( ) ( ) ( )

( ) ( ) ( )
4

( ) ( ) ( )

qp qQ s k P s k v s

V
s P s A s x s Q s

m s x s s x s A P s




    
      

       

   3 2 2
0 0

4( )

( ) 4 4 4
q

qp qp

A kx s

v s m V s V k m s A k s


    

 


             

Linearized lumped equations of 
the hydraulic system (here v=z) 

Valve equation

Flow-pressure equation (=E) 

Motion equation  

Transfer function from the valve spool position to the cylinder piston stroke 
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• Dynamic system of 4th order  

Flexible joint in robotics and mechatronics 



q

 

 After neglecting (or compensating) 
for the residual plant’s dynamics

 two-mass (-inertia) system       
connected by a gear transmission  

 If neglecting elasticities, i.e. 

 single (lumped) mass and damping 

( ) ( )m M q d D q u    

q 

 If significant elasticities, e.g. flexible parts   
in gear (like for example in harmonic drives)  

 additional internal dynamics   

( )

( ) 0

m d K q u

Mq Dq K q

  


   
   

 
 

u

 q

 

source: [17]
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• Dynamic system of 4th order, cont.  

 Neglecting elasticity 
(first-order system)    

1

( ) ( )
( )

( )

q s s
H s

U s






 With detectable elasticity 
(low stiffness)    

2

,

( )
( )

( )
K m M

q s
H s

U s 




 With “hidden” elasticity 
(high stiffness)    

3

,

( )
( )

( )
K m M

q s
H s

U s





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• Practical (hand on) session 2 

Consider DC motor (from page 49)

Assume the following parameter 
values for the DC motor:

1, 0.0002, 0.04,

0.0001, 0.00005

R L

B J

   
 

1. Implement the numerical model of DC motor in Simulink.

2. Implement the numerical model of DC motor in MATLAB.

3. Compare the step response of both (from 1. and 2.) implemented models.

4. Can the parameters of DC motor be selected so that the response is oscillatory?
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Dynamic system behavior in time 
and frequency domain
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• Why do we need differential equations in control?  

( )
1 0

( )
1 0

n

m
m

y a y a y
b u b u b u

   
  




( )y t( )u t

( )y f u
yu

Dynamic (i.e. time-dependent) input-output 
function with a transient phase and steady-state   

Static input-output function (no time evolution)   
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• Consider Linear Time-Invariant (LTI) systems  

 Given a general dynamic model as differential equation (i.e. ODE)  

 Corresponding transfer function (in Laplace domain) 

All (!) dynamic LTI-systems can be described by means of the 
ordinary differential equations (ODEs) of the order n, where    n 
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• Mostly, we are dealing with proper and causal systems  

r n m 

0r 

0r 

0r 

 If the right-hand-side of ODE is zero, then we have a free system 
(i.e. only the own dynamics  natural response)  

( )
1 0 0n homogeneous ODEy a y a y  

 Otherwise, it includes also externally excited (i.e. input-driven) dynamics 
( ) ( )

1 0 1 0

external part of system dynamics

n m
m honmogeneous 

ODE

y a y a y b u b u b u        
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• Linear homogeneous 1st-order differential equation   

( ) ( ) 0 ( ) ( )y t ay t y t ay t     

We are interested in some function, whose time derivative is 
equal to the function itself multiplied by some constant   

0 0

( )

( ) ( ) ( )t t

z t

z t e z z t e z z t     

Take the Euler function (exponent)    

Thus, the function                   has that property: ( )P ty e

st( )

Since is the so-called  (i.e. integral) of 

is a  of 1 -order ODE
adtP t at

P a

y e e e
 



  

antiderivartive

solution


( )( ) P t

a

y P t e ay



   
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• Linear homogeneous 1st-order differential equation, cont.   

 General solution (independent of initial conditions) yields from the fact:   

if  P is antiderivative of a, i.e.      

Since C can be any constant  

( ) ,P t adt  then any other P(t)+K, with       

K to be a constant, is also an antiderivative of a, because of        ( )P t adt K 

 is also a 
adt K K at at

C

y e e e Ce
   



   solution

is called  aty Ce general solution

 General solution is also used to solve initial value problem of   aty Ce

If, for the given ODE it is known                          ,  then   0( 0)y t y 

0
0(0) ay Ce C y    0( ) aty t y e  : particular solution 

(for given initial value)
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• Linear homogeneous 1st-order differential equation, cont.  

Example 8 (solve an initial value problem)       

2 0, with  (1) 5, 0t y y y t   

exponential term is
2 2

0, (1) 5.    y y y a
t t

     

2 22
( ) 2 ln | | ln | | lnP t dt t t t

t
   

2( ) ln 2( ) P t ty t Ce Ce Ct    

Then, the general solution is       

For the initial value y(1)=5   C=5   

Thus, the particular solution is    2
2

5
( ) 5y t t

t
 
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• Linear homogeneous 1st-order differential equation, cont.   

Example 8 (solve an initial value problem), cont.       

source: [18]
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• Linear non-homogeneous 1st-order differential equation   

0( ) ( ) ( ), (0)y t ay t bu t y y  

First, consider the solution of (corresponding) homogeneous equation, i.e. u=0    

into (ii) and, then, evaluating the initial value results in 

(i)   

0( ) ( ), (0)y t ay t y y  

Substituting the general solution

(ii)   

( ) , ( )t ty t ke y t k e  

t tk e ake k ak a          

Thus, the homogeneous solution of (ii) is  

0
0 0(0) ay ke y k y    

0( ) at aty t ke y e  

(iii)   

(iv)   
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• Linear non-homogeneous 1st-order differential equation, cont.  

Now, taking the time derivative (by chain rule) of the general solution (iii)     

(v)   

Then, solving it with respect to k(t) results in 

( ) at aty t k e k a e     

and substituting          and          into (i) results in       ( )y t( )y t
at at at

at

at

ke k ae k ae bu

ke bu

k e bu

  



  

 

 





Integrating the left- and right-hand-side results in      

( ) (0) ( )
t t

ak d k t k e bu d     

( ) ( ) (0)
t

ak t e bu d k    (vi)   
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( )
0

0

( ) ( )
t

at a ty t y e e bu d      

Now, substituting (vi) into homogeneous solution (iv) results in      


0

0

( )

0

( ) (0) ( )

(0) ( )

t
at at a

t
at a t

y

y t k e e e bu d

k e e bu d





 

 

 

  

   

  



 : General solution of the
non-homogeneous ODE

General solution of ODE is a superposition of own and excited dynamics       

homogeneous 
solution (own    
dynamics)    

particular solution        
(externally excited    
dynamics)    

(vii)   

• Linear non-homogeneous 1st-order differential equation, cont.  
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• Laplace transform and its inverse  

• Why do we use it?  
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complex Laplace variable

s j  

• Laplace transformation: from time-domain into the complex 
s-domain Laplace domain (and also back-transformation) 
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• Laplace transformation properties:  

• Simple examples:  

( ) : function in time domainf t ˆ ( ) : transformed function in Laplace domainf s

source: [19]



page 72 of 245Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics 

• Main advantages of using Laplace domain  

 Differentiation becomes multiplication with s

 Integration becomes division by s

 Solving the ODEs with t-argument becomes  
solving the algebraic equations with s-argument

d
s

dt


0

1 t

dt
s 

 

( ) ( )
1 0 1 0

1 0 1 0

n m
m

n m
m

y a y a y b u b u b u

s Y a sY a Y b s U b sU b U

      


      

  

 

 Input-output system behavior described by an algebraic transfer function

2
2 1 0
2

2 1 0

( )
( )

( )

m
m

n

m s b s b s bY s
G s

U s s a s a s a

   
 

   



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• Transient analysis 

Typical (i.e. characteristic) input functions:     

( ) 1t dt





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When applying 
unit input step 

Transforming back 
into time domain 

Evaluating the 
initial derivative 

Evaluating 
single points 



• Example 9: first-order system   
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• What is steady-state if the input is not a step, but a harmonic?  

Typical example for a 
harmonic input 
(excitation) and the 
resulted system response      

lim ( )
t

y t


• Example 9: first-order system, cont.   
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• Fourier transform for system analysis in frequency domain   

 Transfer function of the system can be described in frequency domain       

 Alternatively (and commonly) with magnitude (M) and phase () response        

 Also, in the polar coordinates (Nyquist plot)          
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• What is behind Frequency Response Function (FRF)? 

with
( )

( ) ( ) ( ), ( )

( ) ( ) ( )

dy t
Ri t y t u t i t C

dt
RC y t y t u t

  

  

Applying unit-impulse (i.e. Dirac) signal

( ) ( ) ( )RC y t y t t 

Taking Laplace transform, and evaluating for zero initial condition, yields 

 
with

( ) (0 ) ( ) ( ) 1

( ) 1 1
,

( ) 1

RC sY s y Y s U s

Y s k

s k
k

U s RCs RC

   

  





Evaluating output (as inverse Laplace transform) results in the impulse response

 1
( ) ( ) 1(

1
( )) ( )

1

t

RC Gy t g t e t Ls
RCs

g t
RC


    




Example 10 (simple RC circuit)       

source: [4]
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When exciting LTI-system by a harmonic (sin or cos) input 

 cos( )
2

j t j tA
A t e e    (due to Euler’s formula) 

then, an LTI system is replying with 

( ) ( )

( ) ( ) ( )
2

cos ( )
2

j t j t

j t j t

A
y t G j e G j e

A
M e e AM t

 

   

 

 



  

     

     

with the magnitude and phase characteristics    ( ) , ( )M G j G j    

Back to Example 10 (from the previous slide): 

1
( ) ( ) ( ) cos( )

k
G s G j k y t AM t

s k j k
  


     

 

1

2 2
with

1
, tan

k
M k

j k kk


 

         

• What is behind Frequency Response Function (FRF)? cont. 
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 10 | | , where | | is the ratio (i.e[dB] 2 . uni0 l to ss)g leG G

M

• Bode plot   
(Bode diagram)

Transfer functions can consist of the following elements:
1. Constant gains
2. Poles and zeros at the origin
3. Real poles and zeros not at the origin
4. Complex poles and zeros 
5. Ideal time delays 

( )G j

Steady-state 
characteristics of 
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One can also consider only the asymptotes in Bode plot (for sake of simplicity) 

M

• Bode plot (Bode diagram), cont.

M

System gain

Differentiator
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0

10

20

30

40

0

10

20

30

40

with some example values: 

1 2 310, 100, 10, 1k      

123

k

• Example 11: constructing Bode plot   
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• Practical (hand on) session 3 

First-order ODE system

Consider a dynamic system described by

1. First, solve the above homogenous ODE in time domain.

2. Then, solve the above non-homogenous ODE in Laplace domain. 

3. For the back-transformed solution of 2., make a MATLAB implementation.  

2 ( ) ( ) ( ), (0) 0.y t y t u t y  

Assume the system is excited by 

where  is the unit-step function.( ) (0),   ( ) u t h h t
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Transfer function analysis and state-space 
modeling
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(i)  in series   

• Main rules of block diagrams algebra 

(ii)  in parallel   

(iii)  closing loop    
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(i)  commutative   

(ii)  associative   

(iii)  invertible   

(iv)  distributive   

• Main rules of block diagrams algebra, cont. 
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Gain and phase margins of the open-loop

Open-loop transfer function
(all transfer blocks connected in series before closing the loop)      

( )
( ) ( ) ( ) ( )

( )

Y s
L s H1 s H2 s Hn s

R s
    

Open-loop transfer function has all information about the closed-loop stability

( )
( )

1 ( )

L s
G s

L s




But (!) to consider only characteristic 
polynomial D(s) of L(s) is not sufficient: 

( ) ( )
( ) ( )

( ) ( )) (

N s N s
L s G s

N s D sD s 
  

• Stability of feedback loops 



page 88 of 245Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics 

Gain margin     

Phase margin     

• Stability of feedback loops, cont. 
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unstable  

stable  

( )i

( )i

( )ii

( )ii

stable  

unstable  

control, plantH G 

• Stability of feedback loops, cont. 

Examples of open-loops for unstable and stable closed-loops     
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Open-loop transfer function: ( ) ( ) ( ) ( )oG s F s G s H s

1 ( ) ( )
( ) ( ) ( )

1 ( ) 1 ( )o o

H s G s
e s u s Z s

G s G s
  

 

• Control error of the closed-loop 

must be shaped to minimize( )  ( )oG s e s
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( )L s

( )L s

( )L s

• Control error of the closed-loop, cont. 
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,Steady-state error :u sse

( )L s

1
( )

k

c
u s

s 






  





• Control error of the closed-loop, cont. 
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 State-space model describe the entire LTI dynamic system (also 
MIMO) of the n-th order via a vector-valued state (n state-variables) 
and a set of n first-order differential equations

 Each ODE (ordinary differential equation) of the n-th order can be 
transformed into n independent first-order ODEs

 Compact and standard form of the matrix equations suitable for: 
modeling, analysis, state estimation, and control design       

( ) ( ) ( ) ( )my t dy t ky t u t   
 

( )u t

m

( )y t
d

k

 1
( ) ( ) ( ) ( )y t u t dy t ky t

m
   

• Motivation for state-space modeling 

• Example 12: mass-spring-damper system    



page 94 of 245Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics 

 Introduce (internal) dynamic state variables

1 2( ) ( ), ( ) ( )x t y t x t y t  

1 2

2 1 2

( ) ( )

1
( ) ( ) ( ) ( )

x t x t

k d
x t x t x t u t

m m m



   





 Matrix notation



 1 1 1

2 2 2

0 1 0
, 1 01

x x x
u yk d

x x x
m m m

                                   C

BA






 Uniform system description (parameterization) through 

system matrix, input coupling matrix, output coupling matrix.  A B C

T

u
y 
x = Ax + B

C x
 1 2state vector: [ , , , ]T

nx x xx 
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• Laplace- and time-domain solutions   

First, consider 1st order scalar system (ODE) with an initial value 

Applying the Laplace transformation   

With back-transformation into time-domain    

homogeneous 
solution (own    
dynamics)    

particular solution        
(externally excited    
dynamics)    
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The solution in vector/matrix form  

What is derivative of the matrix exponential function       ?         

Matrix function as power series  

it converges for

• Laplace- and time-domain solutions, cont.   

Now, consider the vector of 1st order ODEs with an initial value

0, (0 )u
 x = Ax + B x x

that is a state-space model 
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with state-transition matrix (also denoted as fundamental matrix)  

 Often used notation  

i. has dominant role in describing the dynamic systems

ii. appears in both – homogenous (excitation-free) and particular 
(externally excited) – solutions in time domain

iii. determines the system state at each time t, for the given initial 
state and input values    

 For the initial time              and time transformation                  one obtains    

 basis for any numerical 
(discrete-time) simulation

• Laplace- and time-domain solutions, cont.   
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In analogy to the scalar case  



one can write the general matrix form in Laplace domain 

Provided the matrix                 is non-singular   

where     is the identity matrix  

homogeneous 
solution (own    
dynamics)    

particular solution        
(externally excited    
dynamics)    

• Laplace- and time-domain solutions, cont.   

State transition matrix in Laplace domain  
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Output behavior in Laplace domain   

For zero initial values                  one obtains the transfer function matrix

SISO (particular case)  with input and output vectors b, c, and feedthrough d

with adjugate matrix 

Denominator is characteristic polynomial  matrix A determines the poles!

• Laplace- and time-domain solutions, cont.   
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• Practical (hand on) session 4 

Consider a 4th order flexible joint system (from page 53)

The system dynamics is given by 

1. Determine and write down the state-space model with q(t) as output.

2. Make MATLAB implementation of the state-space model. Show the step 
response of the following dynamic states    

For task 2., assume the following numerical parameter values 

( )

( ) 0

m d K q u

Mq Dq K q

  


   
   

 
 

1, 0.5, 10, 1, 1000.m M d D K    

and( )  ( ).t q t 
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Similarity forms, controllability, and 
observability of the systems
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• Similarity transformations   

 There are multiple ways to define the dynamic states of one and the same 
system   redefine the state variables   change of the state-coordinates  

 For ensuring no loss of information, require also

 Applying the transformation to the state-space model





 Resulted transformation rules

and

 Original and transformed () matrices describe one and the same system! 
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also 

 One can prove the invariance of characteristic equation under similarity 
transformations, while characteristic equation determines the system dynamics 

 

 determinant of the system matrix and the characteristic equation are 
invariant to similarity transformations  free choice of state coordinates! 

 1 1 0
, , 1 0 ,

0 2 1

    
      
   

A B C D 0

 Assume state transformations: 1 1 2 2 2' ' , 10 'x x x x x  
1 1

0 10

 
   

 
T

• Similarity transformations, cont.

• Example 13: consider state-space model    

 Apply transformation rules:  

 Compare in MATLAB both state-space models (original & transformed)   
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• Controllability and observability

 Dynamic system (A,B) is fully 
controllable if the overall system state 
x(t) can be driven by an appropriate 
control u(t) to zero equilibrium, and 
that for any initial state x0.

 Dynamic system (A,C) is fully 
observable if for any initial state x0 the 
overall state vector x(t) can be  
uniquely reconstructed (i.e. estimated) 
for the given input u(t) and output y(t). 

( )u t ( )y tcbx

ncbx

 

 Reduced controllability:        
some non-controllable states xncb

 Reduced observability:       
some non-observable states xnob

( )u t ( )y tobx

nobx
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 1 1 1

2 2 2

2 1 1
1 0

0 1 0

x x x
u y

x x x

        
                  




1s 1s 1

1 2

u y
1x2x

2 (0)x 1(0)x

1 1x2x

1

controllable

uncontrollable

1 1 2

2 2

2

0

x x x u

x x

  
 




• Illustrative example of controllability   

Use of the signal-flow graphs for interpretation 
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1 1

2 2

1

2 3x x u

x x u

y x

 
 





 1 1 1

2 2 2

2 0 3
1 0

0 1 1

x x x
u y

x x x

        
                  




1s 1s 1

1 2

u y
1x2x

2 (0)x 1(0)x

1 1x2x

3 observable
unobservable

• Illustrative example of observability

Use of the signal-flow graphs for interpretation 
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• Kalman criteria for controllability and observability

 A dynamic system (A,B) is exactly then fully controllable iff
the controllability matrix Cr fulfills 

rank rank , , n-1Cr = = n  B, AB A B

 A dynamic system (A,C) is exactly then fully observable iff
the observability matrix Ob fulfills 

1

rank rank

n

Ob = = n



 
 
 
 
 
 

C

CA

CA



Remark:

controllability and 
observability of linear 
systems don’t depend on 
feed-through matrix D
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• Kalman canonical decomposition   

 xCCy

u
B

B

x

x

x

x

A

A

A

A

x

x

x

x

OCCO

OC

CO

OC

OC

OC

CO

OC

OC

OC

CO

OC

OC

OC

CO

00

0

0

000

000

000

000




















































































Ob

Cr

Decomposed (desired) form without couplings
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y

OCS


COS

OCSOCS



u

 Initial situation with couplings     

 Desired is decomposition into 
the canonical (diagonal) Kalman 
form (see previous page)       

• Example of a non-decomposed system
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zCy

uBzAz

m

mm




x Ax Bu
y Cx Du
 
 


Txz 

n  321where all eigen-values of A are distinct (!), i.e.

1

1

1

n

n

m

m m m m

m

b

B T B C CT c c

b



 
         
 
 

 

1
1 where

0 0

0 0

0 0
m m

n

A T AT A







 
    
  



 System in the new z-coordinates is

 There exists a coordinate transformation               such that 

 Diagonalization:

ଵ
ఒభ௧

ଵ ௡
ఒ೙௧

௡

 Homogeneous solution of the above state equation is

• Kalman canonical decomposition, cont.   
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iIf 0 and 0, mode  is controllable and observable
i im mb c  

ଵ ଶ ௡

ubzλz

ubzz

ubzz

mnnnn

m

m












            
2222

1111




nmnmm zczczcy  2211

 Since all eigenvalues of A are distinct  all eigenvectors are independent    

: transformation for diagonalization 

 Diagonalized system:    

1

 1mc1mb

2

 2mc2mb

n

 mncmnb

∑



)(tu

)(ty















1 1

1 1

( )

( )

n
mi mi m m mn mn

i i n

c b c b c by s

u s s s s  

   
   

as transfer function

as state-space form

• Kalman canonical decomposition, cont.   
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• Controllable canonical form

 Given the general dynamic LTI model (i.e. ODE) 

 Corresponding transfer function 

 First, derive the controllable canonical form without input derivatives  

 Assign the state variables xi at the outputs of each integrator  
n-integrators in total connected in series in a forward path   
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

• Controllable canonical form, cont.

 In matrix form (here without system zeros) 
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 Then, for a general case with right-hand side derivatives, i.e.                  , 
one uses the following approach: 

, ,... 0u u  
• Controllable canonical form, cont.

 The matrix form with new states             : 

, .T
C C C C C Cu y  x A x b c x

CA


T
Cc



Cb


C x
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i. controllability matrix:

ii. take last row of Cr –1:

iii. collect elements into the inverse transformation matrix: 

 Compute transformation matrix:

, , n-1Cr =   B, AB A B
1

1 [0 0 1]c  = Cr 

1

1
1 2

1

1
1

n

c

c

c

c





 
 
 
 
 
 
  

A

T A

A



• Controllable canonical form, cont.
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• Observable canonical form

 Similar approach as for the 
controllable canonical form.        
But (!) with the goal to have the last 
state (output) and input within the 
dynamics of each previous state:  

1 0 0

2 1 1 1

1 2 2 2

1 1 1

n

n

n n n n n

n n n n n

x a x b u

x x a x b u

x x a x b u

x x a x b u
   

  

  

  

  
  






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 Compute transformation matrix:

i. observability matrix:

ii. take last column of Ob-1: 

iii. collect transformation matrix: 

 In the transformed matrix form: 

1 TnOb =    C CA CA

 1
1 0 0 1

T
o  = Ob 

2 1
1 1 1 1

n = o o o o  T A A A

, .T
O O O O O Ou y  x A x b c x

• Observable canonical form
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• Duality of both canonical forms   

 Controllable and observable canonical forms are dual to each other, i.e. 

 Both system matrices (AO and AC) contain the coefficients of the 
characteristic polynomial and, thus, describe the same system dynamics

 All coefficients bi of the numerator polynomial are simultaneously in 
the coupling vectors cC and bO of the corresponding canonical forms

, ,T T T
O C O C O C  A A b c c b

source: [19]
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• Practical (hand on) session 5 

Consider DC motor without load ML (from page 49)

For the task 4., assume also the 
following parameter values:

1, 0.0002, 0.04,

0.0001, 0.00005

R L

B J

   
 

1. Write down the state-space model.

2. Derive the controllable canonical form of the state-space model.

3. Derive the observable canonical form of the state-space model.

4. Compute (using MATLAB) the canonical Kalman form. Check the system 
eigenvalues from the system matrix. 
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Standard output feedback controllers
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• SISO closed-loop with reference r and disturbance d as inputs   

• Basic notations for the control loop analysis   

 (open) loop transfer function
(control & plant without closing the feedback loop)

 sensitivity function (how sensitive is the control 
error to an external reference input)

 complementary sensitivity function
(same as the closed-loop transfer function)  

r

e

( ) ( ) ( )L s K s G s

1
( )

1 ( )
S s

L s



( )

( )
1 ( )

L s
T s

L s



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• Requirements on SISO loop transfer function

( ) 1 for gcL j  

i. Possibly large loop transfer 
function at lower frequencies       

Possibly low loop transfer 
function at higher frequencies       

Design of the loop transfer function 
is most critical for the frequency 
range between gc and ( = -180 deg)

( ) 1 0 dBgcL j  

(  180 deg)( ) 1 forL j     

Crossover frequency gc :

source: [20]
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ii. Possibly low sensitivity function 
within possibly large bandwidth        

1
( ) 0

1 ( )
S j

L j



 



( )

. .
0

Since

for steady-state

1
 ( ) ( ),

1 ( )

 0
1

0
1 1/ 1

S s

s s
s

e s r s
L s

s
s

e
s s 




 

  
 



iii. Unity complementary sensitivity 
function within possibly large bandwidth        

( )
( ) 1

1 ( )

L j
T j

L j





 



• Requirements on SISO loop transfer function, cont.

source: [20]
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• Unavoidable (!) limitations of feedback design   

• Always a trade-off when shaping the loop transfer function L 

That means, from an “ideal” controller one wishes to have 

1S T 

( )

1 ( )
( ) ( ) ( )

1 ( ) 1 ( )
S s

G s
e s r s d s

L s L s

 
    

0 0 ( ) 0e r d S s     

source: [21]



page 127 of 245Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics 

 Low frequencies:

 High frequencies:

Reminder: open-loop transfer 
function L contains all characteristics 
of the closed-loop behavior. Thus: 

 make |K(j)G(j)| large as possible 
within the specified bandwidth 1

 make |K(j)G(j)| small as possible 
above the specified bandwidth 2

L KG

1 2

• Unavoidable (!) limitations of feedback design, cont.   

source: [4]
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• Phase margin for shaping the loop transfer function L

2

2

2 2

( )
( 2 )

( )
2

n

n

n

n n

L s
s s

T s
s s





 

 



 

for

deg

PM

100

PM 70

 



• Stability margins for 2nd

order approximations

1
1 4 2PM tan 2 1 4 2m   


        

  

source: [20]

source: [4]
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 Overshoot Mp of transient-response in 
time domain, and resonant peak Mr in 
frequency domain versus PM

source: [4]

• Phase margin for shaping the loop transfer function L, cont.   
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2 2

2 2 2 2 2
( ) ( )

2 ( ) (1 )
n n

n n n n

H s H s
s s s

 
    

  
    

source: [1]

• Closed-loop control system as 2nd-order approximation 

Transfer function in normalized form 

Step response 
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• Closed-loop control system as 2nd-order approximation, cont.  

 1

2
( ) ( ) e sin( )

1

tn
dh t L H s t 


  



2

system damping

1 oscillation frequency
n

d n

 
  
 

  

source: [4]
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1.8
r

n

t


 4.6 4.6
s

n

t
 

 

 (forrise  =0ti :me .5) settling time:

21
p

n

t


 




peak time:

• Closed-loop control system as 2nd-order approximation, cont.  
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21

for

,

 0 1

pM e








 

 

• Transient overshoot versus damping ratio   

Overshot appears when

1 1
( ) ( )y t L H s

s
    
 

reaches its maximum, i.e. when ( ) 0y t 

source: [4]
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Larger natural frequency 
 smaller rise time         

Larger angle 
smaller overshoot         

Larger system damping 
 smaller settling time         

Superposition       
of all 3 curves 
determines the 
pole requirements         

• Assignment of closed-loop poles based on time-domain response   

1.8
n

rt
  ( )pM  4.6

st
 

• Specification of dominant pole pair
of the closed-loop control system in    
s-plane allows shaping the transfer 
function (i.e. design the controller)     

source: [4]
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• Why PID (proportional-integral-derivative) control structure?  

response to the step disturbance response to the step reference

source: [20]

source: [4]



page 136 of 245Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics 

Let us control a 2nd-order dynamic system (plant)  

2
2

1 2

( )
b

G s
s a s a


 

by the proportional feedback only, i.e.   
( )

( ) p

U s
k

E s


Characteristic equation (of the closed-loop):   

2
1 2 2

1 ( ) 0

0

p

p

k G s

s a s a k b

 

    
it determines natural frequency, but 
cannot change the system damping 

For steady-state (if G(0)=1) we obtain   

0

( )( )

( ) 1 ( ) 1
p p

p ps

k G s kY s

R s k G s k


 
 

source: [4]

• Example 14: impact of proportional control only    
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• PID controller: Proportional, Integral, Derivative   

part part

part
Step response of the 
PID control element 

0 0

( ) 1 ( )
( ) ( ) ( ) ( ) ( )p i d p d

i

de t de t
u t k e t k e t dt k k e t e t dt T

dt T dt

  
      

 
 

,p d
i d

i p

k k
T T

k k
 Overall control law, with two equivalent parametrizations 
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As transfer function          
(with Bode diagram) 

• PID controller: Proportional, Integral, Derivative, cont.   
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• Principal impact provided by P, I, and D control terms   

0ik 

0ik 

source: [20]
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• PID control in frequency domain  

Standard structure       

For practical implementation  

(for ensuring PID transfer function is proper, i.e. no free differentiator of D-part)       

1
( ) 1 with

1
d

PID p d d
i d

T s
C s k T

T s s



 

    


time constant of low-pass filter 0d 
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1 2( 1)( 1)1
( ) 1i

PID p d p d PID
i

K T s T s
C s K K s K T s K

s T s s

   
       

 

1 2

1 2

1 2

p
i

i

d
d

p

p PID i

i

d

K
T

K

K
T

K

K K T

T T T

TT
T

T T







 




As transfer function: once in a parallel- and once in a serial-connection

with parameters relationship

• PID control in frequency domain, cont.  
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The still unknown parameters K, T1 of the open-loop transfer function L(s)

Optimal open-loop transfer function in form of 

1

( )
( 1)

K
L s

s T s




1

( )
( 1)o

K
G s

s T s


 

 

( )L s

2 2
1 1

1
( ) ( )

( / ) (1/ ) 1cl

K
L s G s

T s s K T K s K s
  

   

Parameter T1 (as a time-constant) can be assigned first, by a control specification, since it 
affects directly the bandwidth of the closed-loop control system. Then, one finds a suitable K

• Loop shaping by using 2nd-order approximation  
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Magnitude optimum approach

2
1 1

1 1
( ) with

( / ) (1/ ) 1 2clG s K
T K s K s T

 
 

2

2 2 2 2
21 1

2

1 1
( )

1 22 2 1 21

n
cl

n n

n n

G s
T s T s s ss s


  

 

   
    

1

1

1 1
with   and  0.707

2 2
n nT

T
     

This yields 2nd-order system with damping 0.71   overshoot  4.7%, that is mostly 
acceptable and, even, sometimes desired in applications (when the plant’s damping is higher)

Open-loop in the range of –20 dB/dec     

1

11 1
( )

2 2

K
L j

T


  


   

1=1/T1 is the characteristic corner-frequency of 
intersection between  –20 dB/dec and –40 dB/dec 

1
( ) 6 dB

2crL      

• Loop shaping by using 2nd-order approximation, cont.  
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• Optimal loop shaping with different types of controller  

Some typical corner-frequencies for plant G, control C, and open-loop L

( ) :C s ( ) :C s ( ) :C s

( ) :G s ( ) :G s ( ) :G s

( ) :L s ( ) :L s ( ) :L s

1 2 1

1

( 1)( 1) ( 1)
( ) ,PID PI

PID PI

K sT sT K sT
C s C

s sT

  
 

3

1 2 3

( )
( 1)( 1)( 1)PT

K
G s

s s s  


  

1

( )
( 1)

K
L s

s T s




transfer functions of PID, PI controls  

transfer function of PT3 and PT2 (3=0) plants  

transfer function IT1 (integrator  1st order system) of the open-loop L(s)  
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• Practical (hand on) session 6 

Consider DC motor without load ML (from page 49)

Assume the following parameter values: 1, 0.0002, 0.04,

0.0001, 0.00005

R L

B J

   
 

1. Design PI (proportional-integral) control of angular velocity, using an optimal 
loop shaping. Here, determine first the integrator time constant, then the gain. 

2. Implement the closed-loop system (system plant and controller), in either 
MATLAB or Simulink, and show the controlled velocity step response. 
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State feedback controllers and prefilter 
extensions
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• Basic principle of state feedback control   

 System of n-th order has n roots which determine its natural response  

 Changing dynamics for each of n states means changing location of the roots  

 This can be done by appropriate assignment of the state feedback gains 

 

1

2
1 2 n

n

x

x
u k k k

x

 
 
    
 
 
 

kx 


Here, consider first without 
reference value, i.e. w=0

 Resulted state- and characteristic-equation:  

and x Ax bkx  det 0s     E A bk  roots are ‘placeable’
through selection of k
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 Linearized system dynamics  

 As block diagram with  0 1b  

 State-space model  

*

*

*

• Motivating Example 15: control of unbalanced rod    

 *
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 Closed-loop transfer function with new input = reference value, i.e. (u=w)    

 Polynomial coefficients    

 Closed-loop state-space model, already in controllable canonical form (!)     

 Two control gains determine two roots of the characteristic equation   

• Motivating Example 15: control of unbalanced rod, cont.    

 First, use standard PD control for balancing the rod  

 * ( )P Du K w y K w y    

1 0
2

1 0

b s b

s a s a




 
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 Closed-loop state-space model with decomposed system matrix       

with       and       

*

 To recognize: 
the (initial) system 
control input

* Tu w  k x

• Motivating Example 15: control of unbalanced rod, cont.    

 Corresponding block diagram       
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 System matrix of the closed-loop (in controllable canonical form)       

A bkA Control-related term

For the given 1
g

l
 , design PD control with closed-loop poles   1,2 1, 2   

Compute polynomial coefficients: with MATLAB  poly([-1,-2])

 
01

2 3 2 0
aa

s s    
0 1

0 10 1 0 1

/ 2 3F
P D a ag l K K

    
             

A

3, 3P DK K     given in C.C. form what we want 

• Motivating Example 15: control of unbalanced rod, cont.    

 Let us evaluate here a numerical example
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• Control design via pole placement

 Closed-loop control system (incl. feed-forward) in the state-space form       

 Control with 2 degrees of freedom: state feedback & reference feed-forward

( ) ( ) ( )fb ffu t u t u t w    kx V

 System dynamics         

open-loop (plant) behavior          

closed-loop (control 
system) behavior          

 For desired dynamics  desired poles  characteristic equation

Goal: determine such feedback gain k which provides           

 ( ) ( ) ( )
( ) ( )
t t w t

y t t
  


x A bk x bV
cx


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 Method by Bass-Gura algorithm

• Control design via pole placement, cont.

source: [22]

Assume that the desired closed-loop poles are i with i = 1, . . . , n

The open-loop characteristic equation of the original (given) plant model

with the controllability Cr and Toeplitz matrices T (both invertible)        

rC

T

[ ]T
ra C T   k  1 1for [ ] ( ), , ( )T

n na a a     

The resulted Bass-Gura formula:
1 1[ ]T

ra C T   k
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 Alternatively, transform state-space model into controllable canonical form        

 Example: to show the relation to the Bass and Gura approach        



 feedback:         

 For n-th order 
systems:        

0  1  2  1n  

rC T rC T

rC T

T
C C CA b k

• Control design via pole placement, cont.
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• LQR (linear quadratic regulator) design by Riccati method  

 For the state-space model       

with state feedback control law       

consider design of control gains as an optimization problem       

 Assumption: the system is stable and steady-state-accurate        

( ) ( ) ( )
( ) ( )
t t u t

y t t
x = Ax + B

= Cx


( ) ( )u t t= kx

min J
k

2

0

( )J y y dt


  objective function to be minimized 
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 For steady-state values (denoted by subindex ), i.e. for         

we introduce the new variables        

so that the objective function becomes        

 Thus, the original problem is transformed to the regulation
towards the equilibrium state x , starting from any initial state x

 Next, introduce the weight matrix of the states        

1 Tu y
     x A B C x

= u = u u y = y y    x x x  

2

0 0

T TJ y dt dt
 

   x CC x  

Q TCCinstead of , to be placed in the objective function J

• LQR (linear quadratic regulator) design by Riccati method, cont.  

( ) 0tx =
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 The corresponding resulted objective function        

 After partial integration of P one obtains        

and, hence, one obtains the well-known        Lyapunov equation        

0 0 0 0

0 0

TT T t t TJ dt e e dt
 

    A Ax Qx x Q x x P x

0

with
T t te e dt



  A AP Q

1 1

0

TT t te e dt


     A A

P

P QA A Q A


1 1T T       P QA A PA A P PA Q

• LQR (linear quadratic regulator) design by Riccati method, cont.  
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 For the closed-loop system with system matrix        

consider the objective function       

and R as weight matrix for control value(s)

 Remark: 
larger R weight matrix values  higher “penalty” for the control action 
less energy consumption and less workload of the control/actuator elements   

 For the global minima of objective function, it is required:        

A = A - Bk

0

with( ) ( )T TJ t t dt


   x Qx Q Q k Rk

!

for

with  inputs and  states

0 1 , 1

                ij m n

J
i m j n


  

k
 

Q weights (“penalizes”) the states,     
R weights (“penalizes”) the control 
effort, i.e. energy consumption

• LQR (linear quadratic regulator) design by Riccati method, cont.  
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with         

 Take the Lyapunov equation of the closed-loop system         

Since both terms in eq. (ii) 
are dependent of k         

We also require the solution to be independent of the initial states         

0 0

!

0 0

for 

0

T

T

ij ij

J

J J

k k



 
  

 

x Px

x x

T   A P PA Q (i)

(ii)
T




 

A A - Bk

Q Q + k Rk

T

ij ij ij

  
  

  
A A Q

P P
k k k

• LQR (linear quadratic regulator) design by Riccati method, cont.  
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 Solving the above equation with respect to k results in the optimal control

some intermediate computation steps (omitted here)         

 Putting equations (ii) and (iii) into (i) results in         

Algebraic matrix Riccati equation        

which is then used to calculate the P-solution for the given system 
(A,B) and the specified (by control design) weight matrices Q and R




TRk - B P = 0

(iii)1 Tk R B P

T -1 TA P + PA - PBR B P + Q = 0

Solving Riccati equation means finding P solution of (iv) and then computing k by (iii) 

(iv)

• LQR (linear quadratic regulator) design by Riccati method, cont.  
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• LQR design by Riccati method: the related steps  

 Compute the state feedback gains            

 Define the weight matrices Q and R (mostly with only diagonal elements)          

• Increasing all qii elements  faster total system dynamics, but 
also higher control values will be required

• Increasing a particular qii element  the dynamic behavior of 
the corresponding state becomes faster (than other)

• Increasing of rii values  suppression of the required control 
magnitude (e.g. required in case of actuator limits/saturation)     

 Find the positive definite solution P of the Riccati equation          

 Riccati state feedback 
controller minimizes      

T -1 TA P + PA - PBR B P + Q = 0

1 Tk R B P
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• State feedback control: design of prefilter

 State-feedback alone does not provide steady-state accuracy (!) 

 Include reference prefilter V, which is 2-nd degree of freedom of control

( )w t
V

x = (A - BK)x + BVw

y = Cx



 For steady-state, it is required   
!

, x = 0 y w

 0 (A - BK)x + BVw

y = w = Cx

 Solving the above eq. for x and substituting into the output eq. results in   
1 1,   x (BK - A) BVw y = w = C(BK - A) BVw

B C

K
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 For the required   
!

y w 1 where is identity matrix    C(Bk A) BV E E

 Then, the resulted prefilter   

  11  V C(Bk A) B

• Extended prefiltering with reference comparison 

 
  

 

W

V

Require for steady-state:    

• State feedback control: design of prefilter, cont.

source: [23]
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• Integral control combined with state-feedback 

 Objective: extend the designed state-feedback control so that to have 
the reference-output comparison (i.e. to have the output control error e)              

 (i)  to counteract the disturbances (d) 

(ii) to account for model uncertainties () 

 ( ) ( ) ( ) ( )

( ) ( )T

t t u t d t

y t t

  


x A + Δ x B G

c x



source: [4]
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 Introduce an additional state variable of negative tracking control error (e)

0

0

0

( )

( ) ( ) ( ) ( )

t

T

x t edt

x t t w t e t



  


c x

 For zero reference (w=0)   control problem of a nonzero initial state

0 0

0 ( ) ( ) ( )
t t

T

t t

x t y t dt t dt   c x

 State feedback control law 

new (additional) state   

state dynamics (derivative of l.h.s. and r.h.s.)   

• Integral control combined with state-feedback, cont. 
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 Block diagram of the integral-state-feedback control 

0 0 00

1

0

1

Tx x kk
w

      
             

c

x x 0A Bk




 Overall closed-loop state-space model with reference 

 Design of extended state-feedback control [k0 k1
T] , i.e. for the integral 

error state and original system states, as before, e.g. by the pole placement  

• Integral control combined with state-feedback, cont. 
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• Practical (hand on) session 7 

Consider DC motor without load ML (from page 49)

Assume the following parameter values: 1, 0.0002, 0.04,

0.0001, 0.00005

R L

B J

   
 

1. Design the state feedback controller (by the pole placement) so that the poles 
of the closed-loop system are located at 1,2 = [1000, 100].   

2. For the designed state feedback controller from 1., calculate the prefilter in 
so as to guarantee the steady-state accuracy.

3. Implement (in MATLAB) the closed-loop control system, once from 1. 
without prefilter, and once from 2. with prefilter. Compare step responses. 
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Stability analysis and robust control design
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• Motivating examples of stable and unstable systems  

Open-loop transfer functions (e.g. plants) 

Closed-loop transfer functions for the 
above plants P1,2 (parameter T=0.025)

1st example of two systems

32 20.000625 0.05063

100

1.05 101s s
T

s 



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Open-loop transfer functions (e.g. plants) 

Closed-loop transfer functions 
for the above plants P1,2

2nd example of two systems

• Motivating examples of stable and unstable systems, cont.  
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• Bode integral   

( ) 1
( )

( ) 1 ( ) ( )

E j
S j

R j C j P j


  

 


 Sensitivity function   

 For stable plants:   
0

log ( ) 0S j d 




0

log ( ) Re( ), : the unstable polesi i
i

S j d p p  


 

• Available bandwidth ( < ) 

 For unstable plants:   

 is inherently limited due to:    

i. uncertain or non-modeled dynamics of the plant 

ii. digital control implementation and power limits

iii. nonlinearities and others  

0

log ( )
const

0S j d 


  


 source: [20]



page 174 of 245Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics 

• Interpretation of Bode integral  

 “Serious” (but manual) design   

 “Formal” (automatic) design   

Sensitivity reduction at lower 
frequency leads unavoidably (!) 
to the sensitivity increase at   
the higher frequencies   

More sophisticated (formal) 
design tools can provide a more 
“fine” shape/contour of S(j).                           
But the Bode integral will held!  

source: [6]
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the BIBO stability requires that for any bounded input signal/function 
the output is also a bounded signal/function:

0

( ) ( ) ( ) ,y t g t u d  


 

( ) max ( ) maxu t u y t y      

• LTI system with impulse response g(t) is BIBO-stable iff

This implies for BIBO systems

0

( )g d 


 
0

max max ( )y u g d 


   

Recall that integration of impulse response yields the step response function

0

( ) ( ) .h t g d 


  lim ( )
t

h t const




• BIBO (bounded-input-bounded-output) stability   

 For LTI systems, with the impulse response g(t) and output   
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• Example of not BIBO-stable system: water tank  

( ) ( )A y t u t 

• Example of BIBO-stable system: feedback-controlled water tank 

ODE of the system plant

( ) 1 1
( ) ( ) 1( )

( )

y s
G s g t t

u s A s A 
    

0 0

not bounded
1

( ) 1g d dt
A

 


 

  

 ( ) ( ) ( )p refA y t K y t y t  ODE of the closed-loop system

1

1

( )( )
( ) ( )

( ) ( )

pK
t

p p p A

ref p p

K K A Ky s
G s g t e

y s A s K s K A A


  

 

     
 

0

( ) 1 1 bounded
pK

t
Ag d e  

 
  
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 Re 0i 

• Necessary and sufficient condition for stability of LTI systems

source: [4]
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• Root locus analysis for stability evaluation      

Appliable to the open-loop transfer functions   

( )
( ) ( ) ( ) ( )

( )

b s
L s D s G s H s

a s
 

To check characteristic equation of closed-loop system in dependency of K

( ) 1
1 0 ( ) ( ) 0 ( )

( )
1 ( ) 0KL s

b s
K a s Kb s L s

a s K
        

source: [4]
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Same characteristic equation, now in the polynomial form

Rewriting the characteristic equation for root locus analysis



The solutions, in 
terms of the roots 
depending on c

given denominator of 
the closed-loop system 

source: [4]

• Root locus analysis for stability evaluation, cont.      

Illustrative Example 16: loop transfer function G with one free parameter c
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Used for evaluating the roots of characteristic polynomial, that determines 
the location of poles, without solving explicitly the characteristic equation    

1 2
1 2 1( ) n n n

n na s s a s a s a s a 
     

• Necessary condition for stability by Routh criterion  

• Necessary and sufficient condition for stability by Routh  

For constructing Routh array:

arrange the coefficients of characteristic polynomial a(s) into two rows:
 first row beginning with 1 and followed by even-numbered coefficients
 second row beginning with a1 and followed by odd-numbered coefficients

source: [4]

• Routh stability criterion      
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Then, all subsequent rows of the Routh array are:

with

If the elements of 1st column of Routh array are not all positive, then the number 
of unstable roots (poles in RHP) equals the number of sign changes in the column.

• Routh stability criterion, cont.      
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Which feedback gain is required? (note that one pole is already unstable) 

The characteristic equation 

The corresponding Routh array is



source: [4]

• Routh stability criterion: use for parameters/gains variation      

Illustrative Example 17
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For the closed-loop system is stable (i.e. for Routh criterion is fulfilled): 



source: [4]

Illustrative Example 17, cont.
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• Why phase response is as important as magnitude response?  

Example 18: compare Bode diagrams of the 3 transfer functions 
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1

( 10)
( )

(

7

1)( 50)

0 s
G s

s s




 

2

( 10)
( )

(

70

1)( 50)

s
G s

s s

 


 

Now, consider these loop transfer functions but with additional gain K=70

0.05
3

( 10)
( ) e

( 1)( 50)

70 ss
G s

s s



 

Example 18: compare Bode diagrams of the 3 transfer functions, cont. 
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1
,1

1

( )
( )

1 ( )cl

G s
G s

G s




2
,2

2

( )
( )

1 ( )cl

G s
G s

G s




The closed-loop response for G1,2,3 (from the previous page)

0.05
1

,3 0.05
1

( ) e
( )

1 ( ) e

s

cl s

G s
G s

G s






Example 18: compare Bode diagrams of the 3 transfer functions, cont. 
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• Non-minimum-phase systems, i.e. with unstable zero(s)  

1 2 3
( )

1 5 ( 1)( 5)

s
G s

s s s s


  

   

It can equally be interpreted as 
a negative derivative response

3
( )

( 1)( 5) ( 1)( 5)

s
G s

s s s s
 

   

5 51 1 1 1
( ) 3

4 4 4 4
t t t td

g t e e e e
dt

             
   

Superposition of two PT1

elements, one with positive 
and other with negative gain
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• Some shortcomings of gain and phase margins

Example 19: sufficient gain and phase margins, but (!) poor stability 

( )
( )

1 ( )cl

L s
G s

L s


source: [20]
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Consider the open- and closed-loop systems with the same disturbance d

( ) 1
( )

( ) 1 ( ) ( )
cl

ol

Y s
S s

Y s C s P s
 






• Maximum of sensitivity function magnitude 
| S | can be seen as a stability margin (Ms)  

• Why sensitivity function S is then so important?
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• Stability margin    

Consider shortest distance sm from the Nyquist curve to the critical point 1   

Remark: stability margin 
frequency lies between the 
gain-crossover and phase-
crossover frequencies

From the sensitivity 
function’s viewpoint

1
( )

1 ( )
S s

L s




( )( ) ( )r reference sE s S s 

( )( ) ( ) ( )d disturbance sE s S s G s 

Recall that the control error has:

source: [20]
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• Stability margin for plant variations    

Im

Re

( )L j

1 L

If within nominal loop function 
the plant P is varying as   

L CP
P P 

For the plant variations P, 
each point A on the Nyquist 
plot changes to a circle of the 
points B with the radius  C P

Then, the open-loop transfer 
function changes to CP C P 

Then, for not violating the critical point 1, i.e. for not 
destabilizing the closed-loop control system, one needs to ensure  

1
1

L
PP

C
C L   


 
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• Unstructured uncertainties of the plant transfer function 
are equivalent to the perturbations in frequency domain  

 Additive perturbations 

 Inverse additive perturbations 
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• Additive uncertainties in frequency domain

One can approximate such regions by circles, 
resulting in a (complex) additive uncertainty

source: [21]

Example 20: Nyquist plot of the open-loop Gp with uncertain parameters

With circles 
of additive 
uncertainty
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• Practical (hand on) session 8 

Consider DC motor with position (!) output  (from page 49)

Assume the following parameter values:

1, 0.0002, 0.04,

0.0001, 0.00005

R L

B J

   
 

1. Assuming the proportional feedback control (with Kp gain) of position, 
determine the loop transfer function, while Kp > 0 is first unknown. 

2. Use the Routh stability criterion for determining the range of possible Kp.

3. Now, the range of possible Kp and, therefore, the stability of the closed-
loop control system must be analyzed by using the root locus.  


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Motion-, force- and impedance-control in 
mechatronics and robotics 
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• Relation between motion- and force-control     

Totally imposed force ( all forces) in a mechanical controlled system  

( , , )F g x x t 

Stiffness of the controlled motion system  
F

K
x





Ideal motion control  Ideal force control  

K  0K 
(varying) impedance control as a ‘trade-off’ in-between   

Often used in applications to switch between motion- and force-control   

source: [17]
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• Relation between motion- and force-control, cont.    

Stiffness of motion as 
one of the main features 
of the controlled system

F
K

X





source: [24]
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• Motion and force control example in mechatronics    

 Hybrid control framework 

 Control law 

 Overall hybrid control system (with affine term due to system linearization) 

 Switching state for changing between position and force 

source: [26]
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• Motion and force control example in mechatronics, cont.    

source: [26]
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• Principles of impedance control    

source: [24]

source: [24]

Feedback linearization resulting 
in a double-integrator plant 
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• Principles of impedance control, cont.   

Robot and environment are coupled through interaction ports

Product of port variables, V TF, constitutes 
the instantaneous power. The integral of this 
is the energy stored or dissipated in network 

Relationship of effort and flow variables in 
network can be determined by impedance operator

Example: mass-spring-damper system

(0) 0Z  (0) with 0Z B B    (0)Z  

source: [17]



page 203 of 245Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics 

Consider the control input 

Substituting it into manipulator dynamics yields a double-integrator plant   

Then, the outer loop can be arbitrary shaped with simple (e.g. PD) control 

• Inverse dynamics control in robotics   

source: [5]
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With the position control error eq=qd –q, the error dynamics is 
becomes  

The total control law is then 

Achieved is the system linearization through: (i) feedback of nonlinearities 
and (ii) control input transformation (via state-dependent inertia matrix) 

• Inverse dynamics control in robotics, cont.   
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path 
planing

&
trajectories
generation joint 

control

central
robot
model

θ
θ

dθ

dθ

dθ

 τ

advanced 
model-based 

position
control

velocity
control

 τ

gain scheduling





dθ

dθ
θ θ

• Robot control with feed-forwarding: example architecture   
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Rigid drive chain (lumped inertia) 
with DC motor as joint’s actuator  

Corresponding (extended) 
electro-mechanical model 

Transfer function without external load 

m iK K

• Independent joint control   

source: [17]
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2

1

Js Bs

D d

• Independent joint control, cont.   

source: [17]

 Reduced-order model with (already regulated) torque as input

 PD control
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Control error transfer function  

Characteristic polynomial of the closed-loop transfer function 

Exemplary values for critically damped (i.e. =1) control design 

 PD control, cont.
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Control performance

There is a need for an explicit compensation of disturbances  

source: [17]

 PD control, cont.

without disturbances, i.e. d=0                    with disturbances, e.g. d=const 
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• Applying PID control   

Motor output response

Routh stability criterion for the integral gain

source: [17]
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• Effect of joint elasticities   

Transfer functions and block diagram    source: [17]
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Root locus (i.e. poles location 
/ trajectories) depending on 
the KD control gain   

• Effect of joint elasticities, cont.   

When using motor 
feedback for control

source: [17]
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Root locus (i.e. poles location 
/ trajectories) depending on 
the KD control gain   

• Effect of joint elasticities, cont.   

When using load 
feedback for control

source: [17]
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• Position control with motion stiffness   

Actuator dynamics with 1DOF

( ) ( ) ( )J x t B x t u t  

Assuming PD-control with Kp-gain as ‘stiffness’

 ( ) ( ) ( ) ( )ref
p du t K X t x t K x t   

 ( ) ( ) ( ) ( )ref
d p pJ x t B K x t K x t K X t    

Closed-loop system dynamics

Equivalent natural behavior
2

2 0
0 0 2 2

0 0

( )
( ) 2 ( ) ( ) 0

( ) 2ref

x s
x t x t x t

X s s s

 
 

    
 

 

with 0 02 , pd
KB K

J J
 

 
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• Force control with interface stiffness   

Same actuator dynamics, but after stiff contact

environmental
counter-force

( ) ( ) ( ) ( )J x t B x t K x t u t    

Assuming force control with the measured F

 
'stiff' sensor on

contact interface

( ) ( ) ( ) ( ) ( )ref refu t F t F t F t K x t    

Closed-loop system dynamics

( ) ( ) ( )refJ x t B x t F t  

At steady-state: contact force ( )refF t

At impact:
1velocity ( )refF t B
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• Position and force control in common impedance structure   

If u=0, then a pure inertia with mass M

If control u as force feedback term u=mF,

This results in changing the apparent inertia in system from M to M/(m+1)

 Advantage of separating the position and force control:        
ax as a function of position and velocity only, and af as a function of force only 

 Idea behind impedance control (as acceleration a-control) is to change the 
apparent inertia, stiffness, damping through the assigned feedback parameters 

e is position error,       
Fe is the force error  

source: [17]

Example 20: Simplest 1DOF dynamics
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• Practical (hand on) session 9 

Consider the single rigid robotic joint

with the driving torque u, total lumped inertia 
J, mass of the link m, distance to COG 
(center of gravity) L, and damping coefficient 
B. The gravity acceleration constant is g=9.8.  

0.1, 0.05, 5, 1.J B m L   

1. Draw the block diagram of the system. Make the corresponding Simulink 
model and show the open-loop step for a steady-state close to   90 deg.

2. Design a feed-forward control for the gravity and damping terms. Then, 
design a PD feedback control, so that the closed-loop system has a critical 
damping  =1 and natural frequency 0=6 rad/s. Show the controlled 
response for 0 deg < ref = 45 t < 90 deg. How will it change for double m?

 

, J
u

B

mg

The system dynamics is described by

sin( ) ,J B m g L u     

Further assume the parameter values:
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Use of observers and estimators in         
feedback control systems
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• Luenberger state observer   

source: [27]
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• Asymptotic observation principle 

 We require that          

with          

L

L

L
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

 In case that               one obtains:          

 The resulted observer dynamics          

L

L

L

L L

L

L

• Asymptotic observation principle, cont. 

system matrix of observer

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• Luenberger observer structure

plant

model

 Then, shape the observer dynamics (via pole placement) by feedback  L

(observer  model + feedback of observation error        )           

L L : desired observer poles  
(design specification) 

L

 Block diagram and signal flow when designing observer            
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• Luenberger observer structure, cont.
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 For the observer’s state equation          

evaluate the state error dynamics, i.e. dynamics of            

This is valid for all initial values              
under one and the single condition:
all eigenvalues of (A-LC) < 0              

ˆ ˆ( ) ( ) ( ) ( ) ( )t t u t y t   x A LC x B L

ˆ( ) ( ) ( )t t t e x x

 

 
  

ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) ( )

d
t t t

dt
t u t t u t t t

t t

  

      

   

e x x

Ax B Ax B LC x x

A LC x x



  0 0ˆ! ( ) ( ) (0)t t    e A LC e e x x

lim ( ) 0
t

t


 e
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• Observer design by pole placement  

 Consider observation problem as a state feedback problem            

 Take the transpose (“T”) matrices (A, C, L) and transformed (“xT”) states           

 Determine the natural behavior of (ALC) through L-matrix assignment               

 Consider the given 
system in observable 
canonical form:            

 
( ) ( ) ( )

( ) ( )

T T T T

T T
T T T

T
T T

t t u t

u t t

   

 

 

A LC A C L

x A x C

L x



( ) ( ) ( )

( ) ( )

O O O O

T
O O

t t u t

y t t

 



x A x B

C x


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 Assignment of observer gains           

0  1  2n   1n  
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   
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

• Observer design by pole placement, cont.  
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• State feedback control with Luenberger observer  

 State feedback control with estimated (observed) states            

 Observer dynamics           

 If the state vector is not      
(or only partially) available

 Use the observed states instead 
of the real (measured) states

 Ensure a fast convergence of the 
observed states (observer dynamics)

ˆ( ) ( ) ( ) ( ) ( ) ( )u t t w t u t t w t      Kx V Kx V

ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( )

t t u t y t

t t w t y t

    

    

x A LC x B L

x A BK LC x BV L



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V
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plant

observer

model

L

• State feedback control with Luenberger observer, cont.  
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• Separation principle

 Include observation error as a dynamic state into the state-space model            

 Resulted overall system dynamics           

 {eigenvalues} = {eigenvalues of ABK}  {eigenvalues of ALC}           

 Observer does not change the natural behavior of the state-feedback 
control loop  no impact on the control system stability (!)

 ( ) ( )t t e A LC e
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0 0
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• State-feedback control design with observer – procedure steps  

 Examine the system controllability and observability (e.g. Kalman)             

 Design the state feedback control, i.e. determine the gain matrix K for 
measurable state vector (e.g. pole placement or Riccati / LQR method)             

 Assume the observer poles to be “far” left from those of the closed-loop 
system, i.e. observer dynamics to be “faster” than the control dynamics             

 Determine the observer feedback L (similar as when designing K-feedback)

 

Re

Im

0

  of observeri

dominant eigenvalues of the 
closed-loop control system

intensity of measurement 
noise noisy outp( ut )y

faster convergence of
eigendynamics (of observer)
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• Kalman filter  

 Further developed extensions/approaches            

• Extended Kalman Filter (nonlinear systems, linearizable)

• Unscented Kalman filter (nonlinear systems, e.g. non-linearizable)

• Kalman-Schmidt Filter (reducing dimensionality of state estimate)

• Kalman-Bucy Filter (time-continuous systems)

• …

source: [28]
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• Kalman filter as state estimator  

 State-space representation               

process noise affects the dynamic states  

measurement noise affects the output value  

( )v t

( )w t
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• Kalman filter versus Luenberger observer  

 Luenberger state observer is used for deterministic systems              

with estimation error dynamics and constant feedback gain              

 Kalman filter (state estimator) is used for stochastic disturbances              

with estimation error dynamics and varying feedback gain              

where : process noise

: measurement noise

( )v t

( )v t

( )w t

( )Lw t
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• Kalman filter as state estimator, cont.  

 Noise processes should be Gaussian processes (Gaussian noise), that means               

i. zero mean value,

ii. variance towards infinity,

iii. sequential values should 

be not correlated 

Q: covariance
matrix of v

R: covariance
matrix of w

:  impulse (Dirac) function 

( )v t

( )v t  2
( )v t v

( )v t ( )v t ( )v t ( ) 'v t

( )w t

 Reminder of correlation:   = 1: fully correlated;   = 0: fully uncorrelated               

 
2

,
, ,

cov( , )
correlation coefficient: = , 1,1 .

var( ) var( )
X Y

X Y X Y
X Y

X Y

X Y


 

 
  

( ),w t ( )w t  ( ) ( ) 'w t w t
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• Kalman filter as state estimator, cont.  

 The feedback (Kalman) gain L has to be selected so that to minimize 
the mean square of the state estimation errors e

 Optimal feedback (Kalman) gain is given by (similar as LQR design) 

where P is the positive definite solution of matrix Riccati equation 

 Unlike the Luenberger observer where L is determined once and 
remains constant, the Kalman filter updates L at each iteration step 

 Matrices Q and R describe the dispersion (i.e. variance) of the 
stochastic disturbances  v and  w
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• Kalman filter: two-steps scheme  

 Iterative predictor-corrector algorithm

• A-priori state estimation based on the previous state value and model

• Measurement of the state (that contains errors)

• A-posteriori state estimation based on measurement & a-priori estimate

1) Predictor phase denoted as Time-Update

2) Corrector phase denoted as Measurement-Update

Model-
based

output measurement
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• Kalman filter: two-steps scheme, cont.  

 Iterative evaluation of the estimated state, and of the variance (which 
is then equivalent to uncertainty) of the states estimate
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• Kalman filter: assumptions  

 Process noise vk :

• Transformation error of the 
transition xk-1 → xk

• p(v)  N(0,Q) : normal (,2)
i.e. Gaussian distributed 

• Q is covariance matrix of vk

 Measurement error (noise) wk :

• Deviation of measurement yk from the “true” system output

• p(w)  N(0,R) : normal (Gaussian) distributed 

• R is covariance matrix of wk

 Simplification:

• Q and R (as design parameters) can be assumed as constant

Stochastic error vectors
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• Kalman filter: equations  

 State vector in discrete time notation

: next state (time step k+1)

: previous state (time step k-1)

: transformation xk → xk+1 (like the system matrix for t)

: transformation uk → xk (input coupling vector)

: process noise             

 Measurement (in discrete time notation):

: recent measurement (at time step k)

: transformation xk → yk (like the output coupling vector C)

: measurement noise

1k k k ku v   x Ax B

1kx

kx
A
B

kv

k k ky w Cx

ky
C

kw
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• Kalman filter: equations, cont.  

 Covariance prediction (per definition)

 Due to linearity of E and independence of     from     and     , 2nd term is zero

0

kv kx ˆkx

 Resulted covariance prediction

kQ
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• Kalman filter: equations, cont.  

Time-Update

 A-priori estimate of state vector x and error covariance matrix P

Measurement-Update

 Kalman gain L and a-posteriori estimate of the 
state vector and error covariance matrix (P) 

kQ

1k R1k L

1 1 11 1
ˆ ˆ ˆ( )k k kk k k ky    x x x= L C

1k L



page 243 of 245Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics 

• Practical (hand on) session 10 

Consider DC motor without load ML (from page 49)

Assume the following parameter values: 1, 0.0002, 0.04,

0.0001, 0.00005

R L

B J

   
 

1. Using the state-space model of the system, design the Luenberger state 
observer for estimating online the motor current state. The observer poles can 
be placed within a range [I,…, 0.5I], where I is the system pole which 
corresponds to the eigenvalue of the motor current.   

2. Implement in Simulink the system plant and the designed Luenberger state 
observer. Compare the trajectories of the system state and estimated state for 
different initial values and, also, when there is some motor torque disturbance.  
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