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Introduction to feedback control systems
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* Why do we need a feedback?

Funny Example 1

we want to take a bath (actually, what we want 1s to fill a water level)

\.\

with or without
feedback?
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Funny Example 1

we want to take a bath (actually, what we want 1s to fill water level), cont.

Let assume: u(f) rate at which the water flows into the bath (what we can control)
h(t) instantaneous level of water in the bath (what we are interested in)
V,m volume of water in the bath, and total mass (current state)

A, p cross-section area of the bath, and density of the fluid (i.e. water)

H desired level of the water (which is our goal, i.e. what we want)
K “intensity” of controlling the water flow (i.e. control gain)
Simpl; » - : . . d V(t)
implified “physics” of filling the bath: V(t)=Ah(), m= o =u(t)
How we control inflow (i.e. adjust the inflow valve): u(t)=K (H — h(t))
contr(;i error ’
Resulted controlled (!) dynamical (!) behavior of the system:
dh(t
Ap% =K (H-h(t))=KH-Kh(t) =  h()= H(l eXp ——z j

. J/

solution for output
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Less funny Example 2

we want to ride a car (actually, what we want is to ride it without accidents)

Road
grade R
Control
Controller variable Actuator Process
Desired Auto Actual
O 0 + Engine - ——0
spced Throttle body speed
4 u v

T
Sensor

Measured WA =

speed

Mo disturbance Road load disturbance _ _No disturbance o

| | | | Simplified “physics” of the car’s motion

S F=m D 4 by + R4) = 21

dt
§ e Which feedback controller to use?
g: Vehicle speed ___________________________________________________________ + .................. Z'(z') — ?? V(t) — V(t)
= A — ——

desired measured
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Less funny Example 2

we want to ride a car (actually, what we want is to ride it without accidents), cont.

First trial: let’s take a proportional (P) controller

= ()=K,(V({)-v(@t)) = m i) (b+K,)v(t)+R(t)=K V(1)

For steady-state (s.s.), we apply the final value theorem, set all derivatives to zero

b+ K
forizO = pv+LR:V = e =V-v= b v+ 1 R#0
dt K K o K K

p p p p

Second trial: let’s take a proportional-integral (PI) controller
= w0 =K, (V) —vO)+ K, [ (V1) ~w(0))di

Differentiate both sides of ODE and take the final values, if V' = const, R = const

mi(t)+(b+ K, ) o)+ Ky(t)+ RO =K, V() +KV () = e, =V-v=0
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e Feedforward versus feedback control

[nput =====p! Process == Output

Desired output
l.csponwp —»| Controller — Actuator = Process = Output

source: [1]

Now, let’s measure the output of interest and compare 1t with what we want!

Desired output Error Actual
) ] P Controller =1 Actuator - Process
response B output

Sensor [« -
Mcasurement output Feedback
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Example 3

we want a variable motor speed (actually, also accurate & load-independent)

Battery

Speed
setting

without feedback

N\NN—
_t__’ DC

amplifier

Speed

setting

with feedback

o TS
Rotalmg disk

DC
amplifier

peed

Speed

source: [1]
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 Feedback control is not new!
see [2]

Maybe the first industrial application of a feedback control system:

Watt’s flyball governor

FIGURE 2 - The centrifugal governor was invented by James Watt

source: [3]
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L Wy /

Sleeve _

© To engine

Balls
-~

———————
”
S—

™ Rotation

Pulley

H’ from engine

i

The following communications were read :—

I. “On Governors.” By J.Crerk Maxwerr, M.A., F.R.S8.L. & E.
Received Feb. 20, 1868.

A Governor is a part of a machine by means of which the velocity of the
machine is kept nearly uniform, notwithstanding variations in the driving-
power or the resistance.

source [4]

Measured Boiler source []]
g ‘ Steam

Shalt axis

Me1al

Outpul
shalt
Engine
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Simple (everyday) Example 4
room temperature control with thermostat

Heat loss
L)uh!
Desired :{nnm ‘
temperature Gas H emperature .
Thermostat > Furnace ouse
valve
(a)
70 source: [4]
/NWN-M“
60 /\
— Room temperature

50 N T
o Outside temperature
T 40
2
8
£
E 30
-

20

| /l!:umacc c:fﬁ' /Fumace on
10 | i {
0 Jl / itd i
0 2 4 6 8 10 12 14 16

Time (hours)
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* Usual notations in feedback control systems

input (or matched) plant disturbances
disturbance (or process noise)
reference
(Value) ~ control A
set point, eITor output
trajectory value

Controller

control
value
(or signal)

measured (or sensor) value measurement Y
noise
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* Daifference between manual & automatic (feedback) control

Manual Control Automatic Control

process
operator

measured behaviour

]

measured
behaviour

levers of
power

process supervisor

For automatic control:

o measured behavior/output is a prerequisite for feedback

strategy
o control < law is a prerequisite for automatic
function
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* Computer-/processor-controlled feedback system

noise external disturbances noise

—+ 3, -—»lActuatory—| System [—w| Sensors | —a=/ )

] Process

;' """"""""""""""""""""""""""" I
! :
: |
: D/A |«—— Computer f«—— A/D |= !
| :
I |
R R Controller _

operator input

We will next always assume 7T

sampling

—> 0 = continuous time domain (7)
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* Why control 1s as important for robotics and mechatronics?
(some motivating movies)
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* Why control 1s as important for robotics and mechatronics? cont.
(some motivating movies)
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* Why control 1s as important for robotics and mechatronics? cont.
(some motivating movies)
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* Why control 1s as important for robotics and mechatronics? cont.

+
el e H (q) —b@—rb Manipulators !
F'y
-

r 3 r 3

C(q.9)q+ 14(q)

source: [5]
P ' h.
&= . Manipulator iz
U4 Impedance § & | Inverse and ~
4 control dynamics environment q >
g
Pes R, .
Direct
. ; :
kinematics
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* Requirements and criteria for feedback control

overall system under
overall control (actuator, plant,

control sensor, etc.)

r e U h%
T K6 66) -
¥

n
<

—  Stability (})
Internal stability: if for all initial conditions and all bounded signals
injected at any place in the system all states remain also bounded

y(s)
S

—  Sufficient reference tracking & disturbance rejection  y(s) — r(s), —0

—  Small (towards zero) residual (steady-state) error |e(t) o < Eoa

—  Fast transient response, 1.€. control bandwidth 1s large enough

— Robustness (against uncertain parameters / unmodeled dynamics)
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Respect the Unstable

The practical, physical (and sometimes dangerous)
consequences of control must be respected, and the

underhying principles must be dearly and well taught.

By Gunter Stein
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FARMWIDE WORLD PHOTOS

* Why control stability 1s so important?

Figure 1. Gripen JAS39

- i ~

OFAME PICTURES

prototype accident on 2 February 1989. The pilot

received only minor injuries.

Figure 2. Chernobyl nuc.
1986.

- -' .-;sb"":; ¥ e : »

lear power plant shortly after the accident on 26 April
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* Why control stability 1s so important? cont.

An LTI system is said to be stable if all the roots of the transfer function denominator polynomial have negative
real parts (i.e., they are all in the left hand s-plane) and is unstable otherwise.

source: [4]
4 Im(s)
STABLE UNSTABLE
X t
X X
LLHP RHP

X

a > 1 o s >

b » RC(‘)
| [ _4.
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* Why control stability 1s so important? cont.

Stability in Lyapunov sense Asymptotic stability in Lyapunov sense

T2 A To A
Via

AN N\
\ J/ T B )/// K\\l T

—

—

e —

source: [7]

Also for the period solutions (i.e. trajectories), so-called limit cycles

XY

Stable limit cycle Semi-stable limit cycle Unstable limit cycle
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* Why control stability 1s so important? cont.

—  Free ball in the gravity field

source: [7]

—  Ball with an energy source leaving the gravity field
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* Why control stability 1s so important? cont.

Example 5

source: [8
) (8]
stable for K < stiffness & unstable for K > stiffness &
(a): ; (b):
Lo AN 2 R e, N
0 N P 0 ey W) W R PR I D
- :
\ .
_5-' = e - pieitienls £ 2 dEaib ey _3() ......................... : ...........................
_10_..-‘.....A-.... ........................................ , '
: _6() ........................... it we ¢ pauamully ¥ WRIEEEY 434
-1 —0.5 0 0.5 1 -6 -3 0 3 6
X X
1 1
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* Issues in control system design and synthesis problem

by Doyle, Francis, and Tannenbaum, 1992

The process of designing a control system generally involves many steps.
A typical scenario is as follows:

.

AR A e

0

10.
11.

Study the system to be controlled and decide what types of sensors and actuators
will be used and where they will be placed.

Model the resulting system to be controlled.

Simplify the model if necessary, so that it is tractable.
Analyze the resulting model; determine its properties.
Decide on performance specifications.

Decide on the type of controller to be used.

Design a controller to meet the specs, if possible; if not, modify the specs or
generalize the type of controller sought.

Simulate the resulting controlled system, either on a computer or in a pilot plant.
Repeat from step 1 if necessary.
Choose hardware and software and implement the controller.

Tune the controller on-line if necessary.
source: [9]

Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics page 27 of 245



* Issues in control system design and synthesis problem, cont.

w -2
L. " -
generalized
plant
EEEE—
! Y
controller
source: [9]

The synthesis problem can be stated as follows: Given a set of generalized
plants, a set of exogenous inputs w, and an upper bound on the size of z, design
an implementable controller y — u to achieve this bound. How the size of z 1s
to be measured (e.g., power or maximum amplitude) depends on the context.
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* Practical (hand on) session 1

Consider Example 2 (from page 7)

For the given car’s dynamics
dv(t)
dt

m +bv(t)+ R(t) = (1)

assume the following parameter constants m =1000, 5 =400
0 for 0<¢<30 sec

and the disturbance value R(7) =
15000 for ¢>30 sec

1. Design a simple PI velocity controller and implement the closed-loop control
system (either in Matlab or Simulink). Show the step response.

2. Show what happens with a step response of the control system without the
integral control part, 1.e. K=0.

3. How will the step response without integral control part change, if there is no
inclination road disturbance acting on the car, i.e. R(¢)=0.
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Control-oriented modeling
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* Domain of knowledge in mechatronics and robotics

Control
Electronics

Electronic
Systems

Modeling

Optimization

Electronics and ICs
Control and DSPs,

Computer

Mechanical

SECUE Engineering

Physical system modeling

Sensors and actuators

Signals and systems

Software and
data acquisition

Computers and
logic systems
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* Which modeling approach for dynamic systems?

Partial Differential Equation «—

Linearize non-linear
I Partial Differential Equation Approximation with
1 Lu dP
linear mped Parameters
Lumped Parameters v Linea / non-linear, order n
1 Ordinary Differential Equation
linear, order n
Order Order
Reduction Reduction
Y
Ordinary Differential Equation Ordinary Differential Equation :
linear, order < n non-linear, order <n
Set Time-Deri- Set Time-Deri-
vatives to Zero vatives to Zero
i N Algebraic Equation Algebraic Equation
linear non-linear I

source: [10]
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e Which level of detail do we need?

Physical (white-box) models Mathematical models
V-D=p 1E f\ .

V-B =0 x = Ax+ Bu
VxE =-9 |

(n) (n—1)
VXH:J—F% V +an—1y + ...

+ detailed (prime) system knowledge + universal mathematical formalism
- requires domain-specific theories - several (vague) a-priory assumptions
- not easy to handle (part. diff. equations) - no direct physical interpretation

“Mixture” from both for a control-oriented modeling

1.  Use general and domain-specific knowledge to derive the system structure

11.  Use decomposition into sub-systems to detect forward and feedback couplings

i11.  Use measurements (much as possible) to evaluate dynamics and steady-states
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 How do we model input-output systems in the loop?

u Process / Plant y

Physical system

given physical setting
— Actyator - - — — .. Sensor — — —.—.

technical setting to be designed

—y+
Control system

Reference value

— Representation of the system elements by the transfer-blocks
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* How do we model input-output systems 1n the loop? cont.

I_",

X = f(v,X,t)
y = h(X,1)

(t—7)/
PT

1

(t—7)/
PT

1

[

u=g(e,t)

€

r

—  Generic view of dynamics: with nonlinear equations and delays

+
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* How do we model input-output systems 1n the loop? cont.

yM e+ tay+a,y=
=b u™ +...+bu+byu

u=ce" +...

Y

+c.e+c.e+c. | edt
1 0 l e ’/0
— Generic view of linear dynamics: with standard ODEs
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* How to perform linearization?

Case 1: output y(7) 1s a function of only one mput (7 )
v(t)=f(u)

Taylors series expansion about the point 7, ¥

?

d’f
2

u=u = au

dar

_ _ 1
v=f(u)+— (u—-u)+—
7] 2!

(Il—ﬁ)2+....

u=u

If 17— 1s small. we 1gnore higher order derivative terms

df

v=V+k-(u—ir): where v=f(uw) and k =—

du u=u
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* How to perform linearization? cont.

v—=v=k-(u-1)
U
y=Kk-u
(Linear model)

Case 2: output y(7) 1s a function of multiple inputs

v=f(u;,im,)+—| _ (u;—1; )+- (U, -1, )
()u] Uy =u; c)ll-? Uy =u;
U, =ﬁ_) U, =l_l_')
Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics page 39 of 245



* How to perform linearization? cont.

Illustrative Example 6
(gravity pendulum) source: [11]

mll = —mg sin 6 — k1O

Linearizing around working point 6, = 0 (rad):

~0 =

sin @ o o

a,0+a,6+a,0=0 with a,=ml a =kl,a, =mg

Linearizing around working point &, = 7/2 (rad):

~] =

sin & o /2

a,0 +a,0 =—const with a, =ml, a, =kl, const=mg = disturbance
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* State-space model via linearization

—  Generic class of nonlinear dynamic systems 2 (here SISO)

x= f(x,u),
y=g(x,u), u,yeRI,xeR”.

—  Use Taylor expansion for linearization

. 0
X=X,+Xx (ij +u, +u (—j + . with working point movable
Ox - into origin: X, =0, u, =0,
P 3 and higher order terms (4.0.1.)
y = xo + x _g + uo +u _g + gh o Wthh arc neglected
Ox o ou o o

—  Matrix/vector form, 1.e. Jacobian matrices

(of /ox, of /ox, - Of/ox, ) of / ou)
Lo ahiay o oL | o |9 o
ox 2 T ou 2

of,/ox, of,/ox, - of,/éx,) \of, / ou |
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* State-space model via linearization, cont.

CT:Z_g:(@g g .. ng,D:@_g; if 2 1s stictly proper = D =0
X

ou

ox, Ox, ox,

* General form of state-space model for MIMO systems

x = AX+ Bu x(t) e R” : vector of system states
y =Cx+Du u(?) e R’ : vector of input values
y(t) e R” : vector of output values

AeR"™ BeR"™,CeR™ ,DeR™ :matrices with system parameters

» D

u(r) x(f)

o—»| B -—>Q—>_[---dr—>0+> C

A [«
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* Linearization analysis for ‘small-signals’

X = Ax+Bu Linear state-space model (SISO) to be derived

x =f(x,u) Generalized nonlinear system (SISO)

First, determine equilibrium values (in the operation point) X ,u#  such that

x, =0=1(x_,u,)

Then, consider small-signal perturbations from that equilibrium

X=X, +0X, u=u,+ou

Then, the dynamics 1s approximated by

of of
x +ox=f(x ,u)+Adx+Bou A=[—} B=[—}

Linearized dynamics around the equilibrium point

O0X = Aox+Bou
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 Example 7: linearization of actuated pendulum 2/ ////

i 8 1, . o |
0 +=sinf = 5 : equation of motion (without damping)
[ ml
o T -7 g T
Introducmg X, X — [6’)6’] and @. = —, U= ¢
%% "N mi’

e Hﬂ"»”)}:f@,u)

Equilibrium with zero input (1.e. u,=0)

%, =0=0, o %=[6, 0], 4 =0
xzzéz—%ine:o 0,=0,r
o of, of, "o
Llnearl.zed ox, ox, { 0 1} - {O}
dynamics A = — , B = _
(at 0 and 7) af, df, —w, cosf, 0 % 1
Oox, Ox, | Ou y, g

L —Xp,Ug
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* Advantage of linear time mvariant (LTI) systems 1dentification

o Superposition principle in LTI input-output systems

1 - T 1
u, ol || =— V7 o |
% o 10 5 10
1M T T T T X T - — :
u (n) y ‘I|I|'||""IIIr ”‘l"r"'TIFIT’IW
) :
+...+ + = 111 L1 )Y ]
Yy o ay f’oy _ . U, 0 |-|'|I|||I||'|-i —p Vo m'I'I|I|||||| i
=b u'"™ +...+ b +byu JU UV VUYL
= ek I ¥ ¥ F ¥ Ly /.
() 5 10 S .
a2 ~ 2
z fl 1 |I||| [ I'I. \
 ofV),| ||'-'I — | o\ V)
i ||| I. | .|I | | —d I' |
& | VYV VYV U -~
" 5 10 b 5 10

o Tunable parameters from the response in both, time- and frequency-domain

‘ ‘ / t g (1  (t

J_ & | > ) _yf 20 r0_,

(1+75)" | u(1m) G (1w) v (1w)
Parametric
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* Example of real applications: joint (¢ and &) with elasticities

mij+dj+K(g—0)+G(g—6) = u

M6+D6—K(q—6)—G(G—6) = source: [12]
10" ———r————— SRR EEEES

ol

= g

5 107+ -

% measurement

_ linear model |- - : -
nd BRI EEETT . 1 3 s usig]

1 10

0
10 — T T : T T T T
-
= ., |
S 10 - B
;5— measurement
- linear model |- @ : - : SRR
1074 - il TR R IR
1 10 100

o rad/s
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* Example of real applications: hydraulic cylinder of a crane

1

G(s) = —-

S

K'WnQ

$24+2-(-wy -5+ wy?

Lower Cylinder

source: [13]

— Model Fit
* Measured

10°

i P |

10

10°
Frequency [rad/s]

10
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* Example of real applications: DC motor velocity and current

I o R-m o K & | 1 0
. L L T .
X = & K, x+ | L]ut F. sgn(xz) source: [14]
= T 0 >
L F J
200 e 3.5V step-res -
— 3.5V step-response 10 2V step-response
hn
) 1
" 150F — 8 " optimized model
& < I .
N PR | = = = real System
'—_‘: 100+ E ol
z optimized model -
=0 real System
:c 0‘ 1 L i 1 J 0 'l A J
0 0.25 0.5 0.75 1.0 1.25 0 0.25 0.5 0.75 1.0 1.25
time |s] time |[s]
300 ’ VY o . _
- 5V step-response 151 5V step-response
:'2‘\ 250+ M
2 . _— f optimized model
o <
= <0 — 10} " = = = real System
- = |
= 150 g
2 100t w—Optimized model = 51
= g o . (3
% 50l real System
"o : ; : . , 0 : . , : :
0 0.25 0.5 0.75 1.0 1.25 0 0.25 0.5 0.75 1.0 1.25
time [s| time |s
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* Dynamic system of 2" order

Direct current (DC) motor

)
I-..#
I,

G-
1
0
f

Nt
2
i

Linear dynamic system model

N

Lﬂ+Ri:u—\Pa)
dt - >

79 Bo=wi-M,

dt J

Course: feedback control systems for mechatronics & robotics

@(s) v
— = 2 2
u(s) LJs*+(JR+BL)s+BR+Y

page 49 of 245

Dec 2023, M Ruderman



e Dynamic system of 2" order, cont.

source: [15]

NP o oy % M Les®
—» > > e »
A L |
S | |
I |
«— electrical domain D-}'I mechanical domain —»

Relevant assumptions to be made:

1.  No power-electronics, correspondingly no PWM and no circuits dynamics
i1.  Constant, correspondingly uniform, magneto-mechanical coupling (\V')

111.  Linear viscous damping only (i.e. no torque ripples, no Coulomb friction)
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* Dynamic system of 3" order

Valve controlled hydraulic cylinder —>Xx m

P, Py
Static input nonlinearity of the valve H
cylinder
z = h(v)
. . (\\ 0,
Orifice equations of the valve
7 2 H v

2K+/Ps — P4y, forz>0, - /X
Ra(z) = { zK+/Py—Pp, forz<0, \ e
i otherwise; T T
i —2K+/Pg — Pr, forz>0,
QB(z) = { —zK+/Ps—Pg, forz<0. L | source: [16]
0, otherwise.

\

Continuity equations of fluid in hydraulic circuits

: E
Py = Vo (Q4—441—CL(P4—PB))

A

. E
Pgp = Vo (QB+ 4BI—CL(PB—P4))

B
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* Dynamic system of 3 order, cont.

— — == - I m

|
D)

Linearized lumped equations of
the hydraulic system (here v=z)

O(s)+k,, - P(s)=k, -v(s) Valve equation

JI/_IOB s P(s)+A4-s-x(s)=0(s) Flow-pressure equation (=E)
m- s*-x(s)+a-s-x(s)=A-P(s) Motion equation

N

Transfer function from the valve spool position to the cylinder piston stroke

x(s) 4A-kq-,8
v(s) m-VO-S3+(VO-a+4kqp -,B-m)-52+(4A2.IB+4kqp -a-ﬂ)-s
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* Dynamic system of 4" order

Flexible joint in robotics and mechatronics

—  After neglecting (or compensating)
for the residual plant’s dynamics

— two-mass (-inertia) system
connected by a gear transmission

—  Ifneglecting elasticities, i.e. g =0

— single (lumped) mass and damping

(m+M)§+(d+D)jg=u 0.
[)HI
. . .o ) & 688
—  If significant elasticities, e.g. flexible parts ﬁaﬂ ¢ /rgr
in gear (like for example 1n harmonic drives) g* source: [17]

— additional internal dynamics

md+d0+K(O0-q)=u ’ %)

Mij+Dj—K(6-q)=0 -/ \/)
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* Dynamic system of 4 order, cont.

—  Neglecting elasticity
(first-order system)

H (5= 46)=0()

U(s)
. .. e H_ () H_(s) S
—  With detectable elasticity o il ~ ik 2
1 0 2 4 6
(IOW stlffness) 10 10 o (cadis) 10 10
/(s)
,(8) = d
U(S) K>m,M 1 -
R o R .
—  With “hidden” elasticity 05} 0% DR R S ............
(high stiffness) ' ' ' '
0.29 11 H.(s)
/() -'
q i
H.(s)= 0 = y
3( ) U(S) o ot 0.04 0.05
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* Practical (hand on) session 2

Consider DC motor (from page 49)

Assume the following parameter R =1, L =0.0002, ¥ =0.04,
values for the DC motor: B=0.0001, J=0.00005

1. Implement the numerical model of DC motor in Simulink.
Implement the numerical model of DC motor in MATLAB.

Compare the step response of both (from 1. and 2.) implemented models.

= D

Can the parameters of DC motor be selected so that the response 1s oscillatory?
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Feedback control systems
for mechatronics and robotics

1. Introduction to feedback control systems

1. Control-oriented modeling

ili. Dynamic system behavior in time and frequency domain

1v. Transfer function analysis and state-space modeling

v. Similarity forms, controllability, and observability of the systems
vi. Standard output feedback controllers

vii. State feedback controllers and prefilter extensions

viii. Stability analysis and robust control design

1Xx. Motion-, force- and impedance-control in mechatronics and robotics
X. Use of observers and estimators in feedback control systems

Michael Ruderman
michael.ruderman@uia.no
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Dynamic system behavior 1n time
and frequency domain
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* Why do we need differential equations in control?

u Y

Ay
—> y=fu) —»
Linear
Uu
Static input-output function (no time evolution) Nonlinear
u(t) y(?)
Dynamic (1.e. time-dependent) input-output § 05
function with a transient phase and steady-state 5 N |
0 2 4
Dec 2023, M Ruderman
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* Consider Linear Time-Invariant (LTI) systems

O Given a general dynamic model as differential equation (i.e. ODE)

d"y(t) d"1y(t) dy(t)
din T Onp—1 din—1 e S G At T ﬂﬂ]y(ﬂ

d™u(t) d™ tu(t) du(t)
= b +b,,_ oo+ b
m dpm m—1 fffm_] T + 01 dt

+ bou(t)

L Corresponding transfer function (in Laplace domain)

}I(S.\] b?‘rzgﬁ:ﬂ%bm—lsm_l%"“Fb}ﬁ‘—-fb[;
LT(SJ s™ + {1?1—15??_1 + -1+ a18 + ag

All (1) dynamic LTI-systems can be described by means of the
ordinary differential equations (ODEs) of the order n, where n € N”
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* Mostly, we are dealing with proper and causal systems

rF=n—m Relative degree Number of poles minus number of zeros; determines whether a
system 1is strictly proper, biproper or improper
Strictly proper The system has more poles than zeros; it is causal and there-
>0 fore implementable, it has an improper inverse and zero high-
frequency gain
[ Biproper | Lhe system has equal number ol poles and zeros; it Is mmple- |
ryr =0 mentable, has a biproper inverse and has a feed-through term,
i.e., a non-zero and finite high-frequency gain
Improper The system has more zeros than poles; it is not causal, cannot
r<0 be implemented, has a strictly proper inverse and has infinite

high-frequency gain.

O If the right-hand-side of ODE is zero, then we have a free system
(1.e. only the own dynamics = natural response)

y(n) +...+ay+a,y=0 homogeneous ODE

O Otherwise, it includes also externally excited (i.e. input-driven) dynamics

y"W e+ +ay+ta,y= {?mu(m) +...+bu+ bo”f honmogeneous
external part of\sfystem dynamics ODE
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* Linear homogeneous 1%-order differential equation
y)+ay()=0 = y{t)=-ay()

We are interested in some function, whose time derivative 1s
equal to the function itself multiplied by some constant

Take the Euler function (exponent)

z(H)=e""z, = z(t)=ae"z,=az(t)
—_—

z(1)

Thus, the function y = e " has that property: y =—P(¢)e " = —ay

—_—
—a

Since P 1s the so-called antiderivartive (i.e. integral) ofa =

_ —P(1t) _ _Iadt _ —at - . st
= y=e =e =e 1s a solution of 1" -order ODE
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* Linear homogeneous 1%-order differential equation, cont.

1 General solution (independent of initial conditions) yields from the fact:
if P is antiderivative of a, i.e. P(t) = J adt, then any other P(?)+K, with

K to be a constant, is also an antiderivative of a, because of P(¢) = J-adt + K

—J.adHK K

= y=e e =Ce ™ 1isalso asolution

= e
——
=C

Since C can be any constant = y =Ce “ is called general solution

—at

O General solution is also used to solve initial value problem of y = Ce
If, for the given ODE it is known y(f =0) = y,, then

y(0)=Ce™™ = C= ¥, = y(t)=y,e ™ : particular solution
(for given initial value)
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* Linear homogeneous 1%-order differential equation, cont.

Example 8 (solve an initial value problem)
ty+2y=0, with y(1)=35, t>0

2 2
= y+—y=0, y()=5. = exponential termis a = "
[

P(t)zI%dt:2ln|t|:1n|t|2:1n12

Then, the general solution 1s

y(t)=Ce "V = Ce™ =12
For the 1nitial value y(1)=5 = C=5

_ 5
Thus, the particular solutionis () =5¢ 2 = t_2
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* Linear homogeneous 1%-order differential equation, cont.

Example 8 (solve an initial value problem), cont.
source: [18]

Jlayvir) = =

_ =2
(d) y(#) = ‘;5
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* Linear non-homogeneous 1%-order differential equation

y()+ay(t)=bu(r), y(0)=y, (i)
First, consider the solution of (corresponding) homogeneous equation, i.e. u=0
y()=—ay@®), y(0)=y, (ii)
Substituting the general solution

y(t)=ke™, y(t)=kie" (iii)

into (11) and, then, evaluating the initial value results in

kle" =—ake® = kl=—-ak = A=-a
yO)=ke ' =y, = k=y,

Thus, the homogeneous solution of (11) 1s

—at

= y(t)=ke ™ =ye ™ (iv)
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* Linear non-homogeneous 1%-order differential equation, cont.

Now, taking the time derivative (by chain rule) of the general solution (i11)
yt)=k-e“ —k-a-e™

and substituting y(¢) and y(¢) into (i) results in

ke —kae™ +kae™ =bu

= ke ™ =bu

=  k=e“bu (V)

Integrating the left- and right-hand-side results in
4 4

[kedz = k()= k(0) = [ e*"bu(r)dz

Then, solving it with respect to k() results 1n

k(1) = je“'fbu(r)dr + k(0) (vi)
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* Linear non-homogeneous 1%-order differential equation, cont.

Now, substituting (vi) into homogeneous solution (1v) results in

t

V() =k(0)- e +e [ e“bu(r)dr =

0
t
=k(0)-e™“ + J‘e_a(t_r)bu(f)df : General solution of the
| —
Yo 0 non-homogeneous ODE

General solution of ODE is a superposition of own and excited dynamics

y(t)=y,e " + je‘““‘”bu(r)dt (vi1)
0

\ ]\ J
| |

homogeneous particular solution
solution (own (externally excited
dynamics) dynamics)
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* Laplace transform and its inverse

L) =Y (s) = [

e Sty (t)dt L7 y(s)] =1

* Why do we use 1t?

input signal

transfer system behavior output signal

time domain «(

Laplace (s) U
‘domain

impulse response

) ————» o
glt)

— y(i) = g * u

* convolution!

Laplace transform

Y

inverse
Laplace
transform

transfer

4 function ((s)

> Y(s) = G(s) U(s)
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* Laplace transformation: from time-domain into the complex
s-domain Laplace domain (and also back-transformation)

Linear differential equations = Laplace transformation

complex Laplace variable

: : \ - —y | — 1
F(s)=L{f(t)}=] e f(t)dt s=0+jo
f(t) F(s)
1 unit impulse &(t) 1
2 umit step 1(7) ]
S
; 1
3 unit ramp ¢ 3
4 e o !
' s+a
1
5 _at 5
2 te (s+a):
6 sint 1.
8"+
7 cos wi 5 : 5
5" +@°
/
3 t" (n=12.3...) —
s
n_-af n!
9 t"e (n=12,3,..) (sia)
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1 -at _ba 1
10 g g
b—a( (s+a)is+b)
1 -bt -at 5
(b - ‘
11 e e ae ) CaTaNaiD)
- 1
12 - 1+ - (be_m—ae‘m)
ab = s(s+a)s+b)
w
13 e ¥ sinwt _
(s+a) +@
—03 S+G‘
14 e  cosax -
(s+a) +w
| ‘ 1
15 —Jn-(at—1+e‘°') _
a” s“(s+a)
@, - . r
16 —,L,,e ’m":sr.n(u,,\fl-._:“r _ W, _
VI-¢” s° +2cm,s + @,
—1 ot - [ .2
—e sin(@,\1-¢" t—9@)
vi-¢
17 i 2
o= tan_"—\'l 6 $° +20hs + @y
1 -t - : | ~
I-———e ™ sin (015" t+0)
1-¢~ o
18 r i _ i
ayI-=¢” s(s° + 2¢wy,s + @y )
¢ = tan E
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* Laplace transformation properties:

f(¢): function in time domain f(s): transformed function in Laplace domain
Time different- |df (t) /dt s f(s) f(0) source: [19]
iation d* f(t) /dt" * F(s)=[* 2 £(0) 47 1) (0)]
Frequency shift|e™** f(t) f(s —|— a)
Time shift f{t —a)p(t—a),a>0 e f(s)
Scaling t/-:t a>0 &f{as)
Convolution fﬂ gt —7)dr = f(%) » g(t) f{s)f}(s)
Initial value  |lim,_ o+ f(¢) = f(07) lime— oo sf(s)}
Final value limy s FTE) lim, g Sf{:S)i
T'If the limit exists. p(t) represents the unit step function.

FIf sf (s) has no singularities on the imaginary axis or in the right half s plane.

* Simple examples:

Exponential y J@ Sine 4 Jw
AN)=e™ o Rs)=5g A(0)=sin(Bt) & F(s)=b5
X /B
X B 5 .
- X 5B
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* Main advantages of using Laplace domain

O Differentiation becomes multiplication with s

“
Il

1 t
O Integration becomes division by s — = j dt
s 7
O Solving the ODEs with z-argument becomes
solving the algebraic equations with s-argument

y 4. +ay+a,y=b u"™ +...+bii+bu
U
s'Y+...+asY+a)Y =b s"U+...+bsU +b,U

O Input-output system behavior described by an algebraic transfer function

Y(s) m,s” +...+b,s> +bs+b,
U(s) s"+...+a,s’+as+a,

G(s)=
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* Transient analysis

> S d 7S
R LY (1) s;ea y state
| Ao
— Plant — N
| ~ b—t
t transient ICSPOISE
v(s)=G(s)u(s) ; y(t)=Ly(s)}
Typical (i.e. characteristic) input functions:
Impulse function A u(t)
o0
o L{(S (2 /} =1
j St)dt =1 >
e t
Step function A u(t)
k |
u(t)=k: t=20 L{u(t)}=k/s
e
{
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 Example 9: first-order system

dy(t) | .
4 C; A y(t)=k-u(t) Laplace transformation —
[
V(s) k u(s : /(s
yes)__ A (s) k y(s) o
u(s) T-s+l1 TS+l
i k/t k -k
Whenapplying K/t kK -k
unit mput step s(s+1/7) s s+l/7
Transforming back 1 A V(D)
into time domain =  y(f)=k-(1—e 7 ) K ‘ 41 < 2%
63%
4
Evaluating the dy(t)] _k o7l = k .
initial derivative dt |,_p 7 T T t
= =0 time constant
Evaluating [:XT 0 ] 2 3 4
single points e 1T, 1 0.37 0.135 0.049 0.018
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 Example 9: first-order system, cont.

Final value theorem: lim y(¢) =s- % =il
——

S s-(T-s+1)|._,

* What 1s steady-state if the input is not a step, but a harmonic?

-

Input
0.5
Typical example for a oer |
h&ITIlOIllC 1nput o 10 20 30 10 50 60 70 80

(excitation) and the
resulted system response

output, y(1)

Transient Steady State

_0.1 1 1 1 1 1 1 L
0 10 20 30 40 50 60 70 80

time (sec)
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* Fourier transform for system analysis in frequency domain

L Transfer function of the system can be described in frequency domain
G(jw) = G(s)ls=jw = R(w) + jX(w),
where

R(w) = Re[G(jw)] and X(w) = Im[G(jw)]

O Alternatively (and commonly) with magnitude (1/) and phase () response
G(jo) = |G(jw)|e/®@ = |G(jw)| / d(w),

where

(@) = tan-' 22
R(w)

and  |G(jw)l* = [R(w)]’ + [X(w)]*

Im(G) = X(w)

L Also, in the polar coordinates (Nyquist plot) Re(G) = R(w)
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* What 1s behind Frequency Response Function (FRF)?
Example 10 (simple RC circuit)

Ri(t)+ y(t) = u(r), with i(t)=C2E

d | .
— Rcy(t)+y(t)=u(t) t u(1) ' —J——

C e 1)

Applying unit-impulse (i.e. Dirac) signal |
RC y(t)+ y(t) =0(t) source: [4]

Taking Laplace transform, and evaluating for zero nitial condition, yields

RC(sY(s)=y(07))+Y(s)=U(s) =1
(C N S
U(S)_RCS+1_S+k’ ~ RC

Evaluating output (as inverse Laplace transform) results in the impulse response

Y=g =T > Gls)=Lg)) =~
RC RCs+1
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* What is behind Frequency Response Function (FRF)? cont.

When exciting LTI-system by a harmonic (sin or cos) input
Acos(wt) = g(eja” + e‘f“”) (due to Euler’s formula)

then, an LTI system is replying with

1) =[Gl + G- jwe ™ ] -

= gM [ej(‘””‘”) + e‘j(“’t“”)] = AM cos (ot + @)

with the magnitude and phase characteristics M = ‘G( jw)

, p=2G(jw)

Back to Example 10 (from the previous slide):

Lo Glje)=k—

s+k jo+

1 k 0,
ith M =k - Cp=—tan'[2
™ k| No?+k* Y (kj

G(s) =

= y(t) = AM cos(wt + @)

jo+
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* Bode plot
(Bode diagram) Bodeplot consists of two plots;

Steady-state
characteristics of } M [dB] A

G(jo)

e The magnitude (gain) versus frequency
e Phase shift versus frequency

o

¢

[dB]=20log,, (|G |), where |G| is the ratio (i.e. unitless)

Transfer functions can consist of the following elements:

|
2.
3.
4
5

Constant gains

Poles and zeros at the origin

Real poles and zeros not at the origin
Complex poles and zeros

Ideal time delays

o [rad/s]
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* Bode plot (Bode diagram), cont.

G(s)=K : dB=20-loglK| :| K>0 : ¢=0°
K<0 : ¢p=—180°

k 01 [dB] koo
o K>0 System gain
K|>1 o [rad/s]
e K<0
o [rad/s] 180
IK|<1
Zero: G(s)=s ; dB=20- log‘j(u\ =20-log(w):
0 =90°
A M [dB] "
. . 20 + 90°
Differentiator 20 dB/dek
1 10 [rad/s =
- | ] o [rad/s]

One can also consider only the asymptotes in Bode plot (for sake of simplicity)
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 Example 11: constructing Bode plot

G(s) = k-(1+75s) 3 k-(1+s/ @)
C(1+75) (14 7,s) (+s/@)-(+5/w,)

with some example values:
k=10, o, =100, w,=10, o, =1

w; s are called breal frequencies. 40
D30t
. _ k|-|1+ je/ w;] 2
Magnitude: |G( j@ )| = — — 2
1+ jo/ o)1+ jo/ o, 220
=
""" b éolo i
Logarithms: log( d) log(a-b)—log(c-d)

= log(a)+log(b)—log(c)—log(d)

S
S

Define decibel [dB]: dB = 20-og(a) ; a ~ konstant

(O8]
S

Magnitude: 20-loglG(jm)|

This means

magnitude (dB)
[\
()

20-10g |G( jw)|=20-log k-1 + jo/ @4 107
o i 1+ jo/ @)1+ jo/w,) 0
o (rad/s)
20- log|/\| % 30- /0g1+——?0 log 1+ _70 fik ]+J(u w (rad/s
@; , w,
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* Practical (hand on) session 3

First-order ODE system

Consider a dynamic system described by

2y(t)+y(t) =u(?), y(0)=0.

Assume the system 1s excited by

u(t) =h(0), where h(t) is the unit-step function.

1. First, solve the above homogenous ODE in time domain.
2. Then, solve the above non-homogenous ODE in Laplace domain.

3. For the back-transformed solution of 2., make a MATLAB implementation.
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Transfer function analysis and state-space
modeling

Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics page 84 of 245



* Main rules of block diagrams algebra

(1) in series

- —» Gl(s) . G’2(3) .

(i1) 1n parallel

= — Gl(s)+ G2(S) N

(111) closing loop

U Gl(s) Y
1+G, () Gy(s)
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* Main rules of block diagrams algebra, cont.

(1) commutative | ¢ aQ W J o G
S G
(i1) associative — | 0 —3 - 4
‘—> Y
G —

(iii) invertible %
§>—> — G —

(1v) distributive

] - -
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» Stability of feedback loops

Gain and phase margins of the open-loop

Ris) +
“(P— Hlifs) 2(s] == r— —s - Hnfs)

Yis)

Open-loop transfer function
(all transfer blocks connected in series before closing the loop)

Y
L(s) = 29 _ mis) - H2(s)- .. Hin(s)

R(s)
Open-loop transfer function has all information about the closed-loop stability

L
G(s) = —8)
1+ L(s)

But (!) to consider only characteristic  7(5) = N(s) = G(s)= N(s)
polynomial D(s) of L(s) 1s not sufficient: D(s) N(s)+D(s)
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» Stability of feedback loops, cont.

Gain margin  GM = 1/|L(jwiso)| where the phase crossover frequency wi s

Phase margin PM = ZL(jw,.) + 180°  where |L(jw.)| =1
the gain crossover frequency w . is where |L(jw)| first crosses 1 from above

10'

Magnitude
5@

—
T

[e—
OI

We W10

Phase

1
Frequency [rad/s]
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» Stability of feedback loops, cont.

Examples of open-loops for unstable and stable closed-loops

log |HG| A
H —control, G —plant
-_"'"u.\ stable
0 N log w
—'i-u,\ o
unstable | ~~__ |
.. ‘""‘"--. Og
| (i) B F
I
| | b
i i
HG | |
arg(HG) A i i
0 : i hf:.u
T~ 16
\\ I stable
~ |
—7 > =
unstable |L\"‘(~l.f) " I
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* Control error of the closed-loop

Z(3)
u(s) «  e(s) n l L y(s)
)_—- F(s) —-{}—-— G(s) -

m(s)

H(s) |

Ermror: e(s)=u(s)—m(s)
e(s)zu(s)mH(.S')G(sj-[Z(.S')+Fr’sje(sj] =
e(S)~[I+H(S)G(’.5’)F(S)]:H(S)—HFSJG(S)Zr"S) =3

| )| o H(s)G(s)
e(s)= -u(s)— —.
1+ H(s)F(s)G(s) I+ H(s)F(s)G(s)

Z(s)

Open-loop transfer function: G, (s) = F(s)G(s)H(s)

B 1 ~ H(s5)G(s)
= e " TG ()

Z(s) = G, (s) mustbe shaped to minimize e(s)
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* Control error of the closed-loop, cont.

Final value theorem Z(s)
. . 1 u(s) +  e(s + y(s)
e, =lm e, (t)=lm s - ~u(s) )- F(s) i = G(s) -
’ f—o0 5—0 1+ L(S) -
m(s)
. . —H(s)G H(s) =
e; . =lm e, (r)=1lm s- (s)Gls) - Z(s)
: t—o0 s—0 1+ L(S) 5 - _—
L(s) K-{o 5" +b " " ¥utbsti)
Typical input functions: S) = -
YP P sV (as" +a, ;s"THtais+)

. h
Step function: u(t)=h = u(s)=—
s

. . S Y

Ramp function: il )i=v-I = His)= —

s
_r . a o a
Parabolic function: u(t) = 2 t° = u(s)=—
Z 5
£k
General: uit )= Cﬁ = lE)= Nz
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* Control error of the closed-loop, cont.

~ The number of free integrators. N, 1s called the system type.

lim L(s)

s—0

= lim —
s—0 8

Steady-state errors for different reference mput

éﬁuss

Steady-state error e, :

u(s) = —
Sk+1

: 1 c .
(t)=1Ilims- — 7 = lim 7
0 ; 0
=2 Ja— s 1+ =)
N=0 1 N=2
( Step h

k=0,c=h 1+ K . ¥

Ramp )
2 - 0

k=1 c=v K
Parabolic a
=2 =g -~ - E
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* Motivation for state-space modeling

—  State-space model describe the entire LTI dynamic system (also
MIMO) of the n-th order via a vector-valued state (n state-variables)
and a set of n first-order differential equations

—  Each ODE (ordinary differential equation) of the n-th order can be
transformed into » independent first-order ODEs

—  Compact and standard form of the matrix equations suitable for:
modeling, analysis, state estimation, and control design

* Example 12: mass-spring-damper system

(@)

| d mp(t) + di(£) + ky(¢) = u(t)

u(t)

—

5(6) =~ (u(t) — dy (1) — k(1))
% m

m k

ANONNNNNNNN

Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics page 93 of 245



—  Introduce (internal) dynamic state variables
(@) =y@), x@)=y1) =

X, (1) = x,(2)
k d

50 =5 (0~ x,()+—u(t)

—  Matrix notation

C

0
[’“1} | lu y=01 o)[le
xz E— — xz
m
—_—

B

> <

—  Uniform system description (parameterization) through
A —system matrix, B —input coupling matrix, C — output coupling matrix.

x = Ax+Bu state vector: X =[x1,x2,...,xn]T
y=C'x
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* Laplace- and time-domain solutions

First, consider 15t order scalar system (ODE) with an 1nitial value

x()=ax(@®)+bu(t) x(0_)=x,

Applying the Laplace transformation

s X(s)—x(0_)=a X(s)+ b U(s)

1
1 x(0_)+
S—a 7

Als)= b U(s)

With back-transformation into time-domain

1 f

at . __ at _, alf—T }
O—ec" . «x(f)=e" x, +Je bu(t)dr
15 . a ﬁ_
| J L J
! |
homogeneous particular solution
solution (own (externally excited
dynamics) dynamics)
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* Laplace- and time-domain solutions, cont.

Now, consider the vector of 1t order ODEs with an 1nitial value
X = Ax + Bu, x(0_)=x,

that 1s a state-space model

The solution 1n vector/matrix form

x(f)=e"'x, + Je‘j“ T Bu(r)dr
0

What is derivative of the matrix exponential function e’ ?

d

_e.-‘sf w .LA E.—'Lr

d7

Matrix function as power series
7

o kg A2 Y o o WED +...:2A” it converges for | 7| < oo
21
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* Laplace- and time-domain solutions, cont.

—  Often used notation

x(H)=0(1)x, + jq:(r— T)Bu(r)dr

with state-transition matrix (also denoted as fundamental matrix)

o(r)=e"

1.  has dominant role in describing the dynamic systems

11.  appears in both — homogenous (excitation-free) and particular
(externally excited) — solutions in time domain

1. determines the system state at each time ¢, for the given initial
state and input values

—  For the mitial time 7, # 0 and time transformation 7" =7—17, one obtains
x(t—1, )=€" ™ x(t, )+ j A9 Byu(r)dtr = basis for any numerical
fo (discrete-time) simulation
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* Laplace- and time-domain solutions, cont.

In analogy to the scalar case

x(D=ax())+bu(t) = sX()—x(0_)=aX(s)+bU(s)

one can write the general matrix form in Laplace domain

sX(s)—x(0_) =AX(s)+B Ul(s)
Y(s) =CX(s)+D U(s)

= (SE-A)X(s)=x(0_)+B U(s) where E is the identity matrix

Provided the matrix (s E— A) is non-singular =

X(s)=(sE-A)"x(0_)+(sE-A) ' BU(s)

( ]\
| |

homogeneous particular solution
solution (own (externally excited
dynamics) dynamics)

State transition matrix in Laplace domain

0(1) =L {®(s)}(r). D(s)=(sE-A)"
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* Laplace- and time-domain solutions, cont.

Output behavior in Laplace domain

Y(s)=C(sE-A)"'x(0 )+C(sE—A)'BU(s)+D U(s)

For zero 1nitial values x(0.) = 0 one obtains the transfer function matrix

G(s)=C(sE—A)"'B+D
G(s)=C®(s)B+D

SISO (particular case) = with input and output vectors b, ¢, and feedthrough d
c'adj(sE-A)b+d|sE-A
sE—-A

with adjugate matrix

G(s) = adj(A) = det(A)A™"

Denominator 1s characteristic polynomial = matrix A determines the poles!

Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics page 99 of 245



* Practical (hand on) session 4

Consider a 4" order flexible joint system (from page 53)

The system dynamics is given by
ml+do+K(O-q)=u
Mg+Dg—-K(6@—-qg)=0

For task 2., assume the following numerical parameter values

m=1, M=05, d=10, D=1 K =1000.

1. Determine and write down the state-space model with g(¢) as output.

2. Make MATLAB implementation of the state-space model. Show the step
response of the following dynamic states @(¢) and g ().
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Similarity forms, controllability, and
observability of the systems
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* Similarity transformations
—  There are multiple ways to define the dynamic states of one and the same
system = redefine the state variables = change of the state-coordinates
x=Tx’
—  For ensuring no loss of information, require also
x'=T'x
—  Applying the transformation to the state-space model

x(1)=A x(7)+B u(s) N TxX'(1)=ATx'(r)+Bu(r)
v(1)=Cx(7)+D u(r) v(i) =CTx(r)+Du(s)

() =TTATX(O)+T'Bu()
y(t) =CTx'(t)+Du(r) .

—  Resulted transformation rules

A’=T'AT . B=T'B, C"=CT and D’=D

—  Original and transformed (") matrices describe one and the same system!
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* Similarity transformations, cont.

—  One can prove the invariance of characteristic equation under similarity
transformations, while characteristic equation determines the system dynamics

sE-A’|=|sE-T'AT|=...= |(sE-A)]

also | A’

=|T"AT|=|T"||A||T| =|A’

A

— determinant of the system matrix and the characteristic equation are
invariant to similarity transformations = free choice of state coordinates!

 Example 13: consider state-space model

A:{_Ol _21} B:m, C=[1 0], D=0

1 1
—  Assume state transformations: x, = x'+x',, x, =10x', =T = {
0 10

—  Apply transformationrules: A’=T7"AT , B=T'B, C'=CT

—  Compare in MATLAB both state-space models (original & transformed)
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* Controllability and observability

—  Dynamic system (A,B) 1s fully e
controllable if the overall system state ()
x(?) can be driven by an appropriate
control u(¢) to zero equilibrium, and
that for any 1initial state x,,.

y(Q

—  Reduced controllability:
some non-controllable states x,, ., ]

—  Dynamic system (A,C) 1s fully
observable if for any initial state x, the  *()
overall state vector x(¢) can be
uniquely reconstructed (1.e. estimated)
for the given input u(#) and output y(7).

y(t)

\ 4
QS
S

d
w

T

—  Reduced observability:
some non-observable states x, ,
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 [llustrative example of controllability
' -2 1 1
M MU
X, 0 -1]|x, 0 X,

Use of the signal-flow graphs for interpretation

X +2x,—X,=u

X, +x,=0
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* [llustrative example of observability
' -2 0 3
Lo S e
X, 0 —1]]x, 1 X,

Use of the signal-flow graphs for interpretation

x,(0) x,(0)

o
vy—

X, +2x, =3u
X, +X, =u
y=%
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« Kalman criteria for controllability and observability

— A dynamic system (A,B) 1s exactly then fully controllable iff
the controllability matrix Cr fulfills

rank Cr = rank [B, AB,..., A"']B] =n

— A dynamic system (A,C) is exactly then fully observable iff
the observability matrix Ob fulfills

C

CA
rank Ob = rank , =n

C —DQ—O Remark:

controllability and
observability of linear
systems don’t depend on
» D feed-through matrix D
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e Kalman canonical decomposition

Suppose it i1s known that a SISO (single-input single-output) system has rank(Cr)= n. < n.

and rank(Ob)= n, < n. In other words, the SISO system. in question, is neither controllable nor

observable. We are interested in a transformation that rearranges the system modes (eigenvalues)

into:
« modes that are both controllable and observable; O
« modes that are neither controllable nor observable: _
Unobservable
« modes that are controllable but not observable; and 1 y
« modes that are observable but not controllable. CO = )¢
Such a transformation is called Kalman decomposition.
Decomposed (desired) form without couplings co
_xco_ _Aco 0 0 0 “xco_ _Bco_
Xco 0 4o 0 0 x5 |Bo co
i, |0 0 A, 0 |x.,| | 0
_5%5_ i 0 0 0 A@E__XGE_ i 0 | Uncontrollable
Y= [CCO 0 Coq 017‘
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* Example of a non-decomposed system

—  Initial situation with couplings

Xeo Aeco 0 A3 0 Xeo Beo

Xeo| _ [A21 Aep A2z A2a| |Xeg Beo

" = . . T u
X¢o 0 0 Ago 0 | [Xeo 0
XE0. 0 0 A4z Agpl [Xea i =

W
x

s (P o y e

y [CL'.L] 0 C—.g[g 0} x + Du SCO

CO
—  Desired 1s decomposition into T + |4
the canonical (diagonal) Kalman > S, < SO > ¥y
form (see previous page)
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* Kalman canonical decomposition, cont.

—  Diagonalization: x = Ax+ Bu
yv=Cx+Du
where all eigen-values of 4 are distinct (1), i.e. 4, # A4, #A, #--- 4

—  There exists a coordinate transformation z = 7x such that

A, 0 0]
A =T'AT where 4 =0 "-. 0
0 0 4
—  System in the new z-coordinates 1s b
z=A,z+B,u B =T"'B=| : Cm:CT:[le Cm,,]
y = CmZ _bmn |

—  Homogeneous solution of the above state equation 1s

z(t) = vieMtz,(0) + -+ + v, etz (0)

Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics page 111 of 245



* Kalman canonical decomposition, cont.

Ith, #0andc, #0, mode 4 is controllable and observable

—  Since all eigenvalues of 4 are distinct = all eigenvectors are independent

T = [v1,v;, -, 0] : transformation for diagonalization

—  Diagonalized system:

—> bml I
as state-space form +
z, A

=Az, +b u

u(t)
= /1222 + bm2M @_._)bm2 T J' e |
: * ‘ o)
22

z =Az +b u

ml

Y =C, 14 + C,2Z5 + e+ C,nl,

—>b
as transfer function mn‘:gﬁ_’ J Tcmn
y(s) Cub c b )

Zmzmz_mlml+...+ mn~ mn "
s—A  s=A s—A
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 (Controllable canonical form

—  Given the general dynamic LTI model (i.e. ODE)

d"y(t) " ty(t) O (®)
din T Un—1 din—1 1 dt — apiit
d™u(t) d™Lu(t) du(t)
s B IO el bou(t) m<n
Mo qpm m—1 dtm—1 T +0 dt EE Du(] m <. mn

—  Corresponding transfer function

G(SJ i };(S] = bﬁlsm' = bﬂ]—ls?n_l b}S 4 b[i

U(s) s" 4+ g, 18" 4.4+ ais+ ap

—  First, derive the controllable canonical form without input derivatives

ry) Al dy
gin T 01T g Tt @

+ agy(t) = u(t)

—  Assign the state variables x; at the outputs of each integrator =
n-integrators in total connected in series in a forward path
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e (Controllable canonical form, cont.

T == 9
1 = Y, T2 = I3
r2 = Y,
—
(n—1)
T — Y T 1 = Tn
Ty = —agT] — @19 — -+ — Op-—1Tn + U,
y = I,
T
—  In matrix form (here without system zeros) y = (L0---0)]
Ly
('i?l\ [ 0 1 B e 0 \/11\ [0\
5 0 1 i 5 5

: : "« 1 ()
0 i wsn ) 1

: : D
\ -'jf'.n / \ —@g —@1 —ag ‘v 0 —Gp1 ) \;1:;1 ) \ 1 /
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e (Controllable canonical form, cont.

—  Then, for a general case with right-hand side derivatives, i.e. u,u,... # 0,
one uses the following approach:

() (r—1)

§ +an—1 £ —|—"'—|—H-1_é—é—a{}{f — 4
(n—1) (n—2) y
bn—l ‘S ‘|‘b:r1—'.2 g S ke bl£ T bD‘E = ¥
—  The matrix form with new states X, =¢: i
. 7 —  (bg by---bp_ N
X, =AX.+b.u, y=c.Xx_.. v {D o ]? :
el T
(:i-]\ [ 0 1 1 [—— 0\ [ T [0
: 8 1 w2 : : E
1 0 E
: 0 0 1 ; 0
\ 3.:11 / \ —an G 2 —On—1 ) \ Ly ) \ 1 )

Ac bc
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e (Controllable canonical form, cont.

b hn- 1

—{ b,
= b
i - a l I l 1 e r l | i h“ Bé(ﬂ
Myt
=1y _ots
—  Compute transformation matrix: i C |

i. controllability matrix: Cr=[B,AB,...,A"'B] A

) y T' = CIA2
ii. takelastrow of Cr1: ¢, =[00...1]Cr :

111. collect elements into the inverse transformation matrix: c, A"l
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 (Observable canonical form

—  Similar

approach as for the X, =—a,x, +byu

controllable canonical form.

But (!) with the goal to have the last

X, =X, —aXx, +bu

state (output) and input within the

dynamics of each previous state:

o

[ z1 X =x_,—a, _x +b .u
Ly

/?0 e 0 _HD\(&H\ (bﬂ\

\ ;%Eﬂ )

[ soe o o oy ; by
0 1
= —+ iU
O ¥
3 = . 0 =a,_5 : :
\0 0 -~ 0 1 —a.n_l) \ﬂ,ﬁ) \, By o
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 (Observable canonical form

—  In the transformed matrix form: X, =A X, +b,u, y=c,x,.

T Y Y i

T I | 1 1 | ®2 Tn—1 ,L 1 Tn =1
-+ - iR - A —_— ;:\—1-|—/ > —
5 S S
—dayp —(1q “0pn1
—  Compute transformation matrix:

. o : T
1.  observability matrix:  Ob = [C CA ... CA”_I]
ii. take last column of Ob': 0,=0b"'[0 0 ... I]T
1. collect transformation matrix: T = [01 Ao, A’o, A’HOJ
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* Duality of both canonical forms

—  Controllable and observable canonical forms are dual to each other, 1.e.
T T T
Ap,=Ac, by=c., ¢,=b,
—  Both system matrices (A, and A ) contain the coefficients of the
characteristic polynomial and, thus, describe the same system dynamics

—  All coefficients b, of the numerator polynomial are simultaneously in
the coupling vectors ¢ and b, of the corresponding canonical forms

Consider the system described by source: [19]
T =Ar + Bu, y=Cz+ Du, (5.18)

where A € R"*", B € R™*™ C € RP*", and D € RP*™. The dual system of
(5.18) is defined as the system

rp = Apxp + Bpup, yp =Cpzp + Dpup, (519)
where Ap = AT, Bp =CT,Cp = B”, and Dp = DT.

Lemma 5.7. System (5.18), denoted by {A, B,C, D}, is reachable (control-
lable) if and only if its dual {Ap, Bp,Cp,Dp} in (5.19) is observable (con-

structible ), and vice versa.
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* Practical (hand on) session 5

Consider DC motor without load M, (from page 49)

For the task 4., assume also the R=1, L=0.0002, ¥ =0.04,
following parameter values: B=0.0001 J=0.00005

1. Write down the state-space model.
Derive the controllable canonical form of the state-space model.

Derive the observable canonical form of the state-space model.

= D

Compute (using MATLAB) the canonical Kalman form. Check the system
eigenvalues from the system matrix.
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Standard output feedback controllers
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* SISO closed-loop with reference » and disturbance d as mputs

* Basic notations for the control loop analysis

L(s)=K(s)G(s) —  (open) loop transfer function
(control & plant without closing the feedback loop)
S(s)= b —  sensitivity function (how sensitive is the control
1+ L(s) error to an external reference input)
T(s)= & —  complementary sensitivity function
1+ L(s) (same as the closed-loop transfer function)
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* Requirements on SISO loop transfer function

1.  Possibly large loop transfer Crossover frequency @,,.
function at lower frequencies ‘ L(jw )|=1=0dB
gc

l]ll T T ITITI'II T T IITIIII

‘L(]a))‘ >1 for w<w, |
Load disturbance
attenuation

Possibly low loop transfer
function at higher frequencies

‘L(ja))‘ <1 for @>®,_ 44

High frequency

measurement noise
1 1 ][II 11

. . log w
Design of the loop transfer function source: [20]

1s most critical for the frequency
range between @,, and @, — g geg)
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* Requirements on SISO loop transfer function, cont.

11.  Possibly low sensitivity function
within possibly large bandwidth

SN 1 _
SCe)|= 1+ L(jw)|
. 1
Since e(s) = Y L(s) —r(s),
S(s)

for steady-state s > 0 =
1 S
eS.S. ~ —
1+1/s s+1|._,

11.  Unity complementary sensitivity
function within possibly large bandwidth

L(jo)

(@)= 1+ L(jo)|

source: [ 2 0]

NROblI\II]L SS

/ o(ul dlsun bance -
y dt[LI]Ud“O[]

rrrT I ] ] T rrrri l T I T rrrri
_Q\“\ Robustness
N [

e

High frequency | _
measurement noise\ \

lllll

log w
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* Unavoidable (!) limitations of feedback design

S+7T =1

source: [21]

& -h JL | .-".'“a-l | (}I‘
E ﬂ = ‘ T | T e --_-:-:T-:-.;;'“ i ?H-:-.-_.‘-:tt |_ T T - _
:‘E ].D r- - .-f"'J ..... it e hhx
El.:l WE LL'!B B = =T - |
2
10 5 ! ! L N N S |_ 1 L 1 [ R R | ! 1 1 L
10 10 10° 10"

* Always a trade-off when shaping the loop transfer function L

1+ L(s) 1+ L(s)

S(s)

e(s) = ( : j()— ) )

That means, from an “ideal” controller one wishes to have

ex0-r-0-d = S(G)—>0
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* Unavoidable (!) limitations of feedback design, cont.

—  Low frequencies:
S small and T close to 1: |L(jw)| >> 1

—  High frequencies:
T small and S close to 1: |L(jw)| << 1

Reminder: open-loop transfer
function L contains all characteristics
of the closed-loop behavior. Thus:

—  make |K(jw)G(jw)| large as possible
within the specified bandwidth o,

—  make |K(jw)G(jw)| small as possible
above the specified bandwidth o,

(log
scale)

0dB

upper bound for

) high frequencies
Ljo) o

ey

lower bound for
low frequencies

@
(log scale)

l

Sensor noise and plant
uncertainty boundary

g

source: [4]
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* Phase margin for shaping the loop transfer function L

10 ¢ — A Im L(iw)
= source: [20]
210° \ RO B
= Nloglo Jm p 4 h \
1%‘(’) S — 1! —1/gn ', Re L(iw)
- T — T T |
5 -120} . \ sm P
2 /
: -150F ¥Pm i ¥m /
w 7
—180 N \ - - _|_ ~ -
10" 10" 10’
Frequency w [rad/s] o
(b) Bode plot (a) Nyquist plot
. oq o . nd -1
Stability margins .for 2 o =PM = tan” {2 g( \/ +ac' -2 4/2) }
order approximations t
1.0
2 ~ 0.8 PM
0, c ~ —
L(s)= - = £ 06 J 100 for
s(s+2¢w,) -
, = PM <70 deg
a)n a 02
T(s)= 2 > et ot ey
s*+2¢ S+ @, 0° 10° 20° 30° 40° 50° 60° 70° 80 source: [4]

Phase margin
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* Phase margin for shaping the loop transfer function L, cont.

3 .

IKG(jw)| L PM =22

(3]
—
-

7Ge) _PM = 45°

—
-
e

0.7
PM = 90°

Magnitude, |7{jw)| and |G{jw)|

0.2 (T(jw) = IK(](_}(U)l =
0.1 =20
O Bandwidth \
2w, Sw, 10w, source: [4]
 (rad/sec)
L)
—  Overshoot M), of transient-response in " "
time domain, and resonant peak M, in 2 = R
. o, =T :: —
frequency domain versus PM o= 2 B §
4 E -r‘; - § E
I,, M,n ..: - E -1
» *1% ] ; » & z
/ e e~ — — e T — deo 7 5 ) 't: 8—
Y —4 g e e 5 §_ £ 2
gk L &5
= o
X E 0
1, >
— ' 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°
- " Phase margin
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* Closed-loop control system as 2"4-order approximation

Transfer function in normalized form

2 2
) )
H(s)=— > L - = H(s)= — -
s*+20w s+ o, (s+lw,) +w,(1-47)
Step response
for{ = 0.2 for for w, = 5 with
= 1 and (=07and{ = 1.
22 = 10. ¢ ] source: [1]
| 1.2
16| w, = 10radss —— - ‘ oo
| 1.0
w, = | rad/s | =07 =1
PN o 08]
§ / '-_5: ®, = 5 rad/s
£ \_/ Rl
E ‘ \ E
< <
i 02
0
s 6 7 8 9 10 0 0.5 1.0 1.5 2.0 2.5 3.0

Time (s) Time (s)
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 Closed-loop control system as 2"d-order approximation, cont.

@ .
2 ¢ 7' sin(w,t)

/ 2
I- é/ source: [4]

h(t)=L" {H(S)} =

o=0w, —system damping \
Im(s)
2 . . ) 4
@, =w 1-¢° —oscillation frequency 0 = sin~'{\
“(.UH
= B I >
z | Re(s)
|
}Q—U’ — W,
|
|
-0.8 (R I
G 5 10 15 20 25 30
Time (sec)
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* Closed-loop control system as 2"-order approximation, cont.

4 . Mp
» +1%
| e 4
09 F——— T T T
0.1
’ '
»
IS
e >
rise time (for £=0.5): peak time: settling time:
1.8 T 46 4.6
[ = [ = [ = =

g p_a)n\/l—g.”2 o (o,
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* Transient overshoot versus damping ratio

Overshot appears when

(5% ¢ = 0.7
S {H(S)%} Mp, =4 16% ¢ = 0.5
reaches its maximum, 1.e. when y(¢) =0 | 35% ¢ = 03
B ii«z 100
=M, =e ] -
for 07 <1 %0
70
60
"
) 40
30
i s 16%
10 /'5“
source: [4] o
0.0 0.2 0.4 0.6 0.8 10

¢
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* Assignment of closed-loop poles based on time-domain response

sin '._-;

4 Imis) v 4 Imis) 4 Imis) 4 Imis)

o ol
o
\- Reis) Rely) Rely) Rels)

Larger natural frequency  Larger angle = Larger system damping Superposition
—> smaller rise time smaller overshoot =~ = smaller settling time of all 3 curves
1.8 4 6 determines the
o =— > (M p) o2— pole requirements
[, [,
source: [4] " e

* Specification of dominant pole pair ian i A
of the closed-loop control system in " MY

] - N =
s-plane allows shaping the transfer . =
function (1.e. design the controller) | [ | 7

- — $—

RHP
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* Why PID (proportional-integral-derivative) control structure?

Error A Present
t
Past Future d€ ( f)
~ -  u(t) =kpe(t)+ ki | e(7)dr + kq
0 dt
| |
| |
|
| | | source: [20]
- | :
\__/ ' ' -
\ Time
t t+ Ty
source: [4]
8 1.8
B P 16 11D
1.4 HH
: 1.2 / A /PI
"§ 2 : rps § 1.0 g !L DO
= 1 v7\ PI = LI NN e
g odl NA-rd & 08 \L
z - V \VALZR Z |
\[ 0.6
-2 Y P
0.4
PID
0 0.2
—~6 0
0 1 2 3 4 5 6 ; 0 1 2 3 4 5 6
Time (msec) Time (msec)
response to the step disturbance response to the step reference
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* Example 14: impact of proportional control only

Let us control a 2"-order dynamic system (plant)

b
G(s)=——
s*+as+a,
by the proportional feedback only, 1.e. Uts) =k
E(s) 7
Characteristic equation (of the closed-loop): source: [4]

1+k,G(s)=0

2 —
= s +as+a,+k,b,=0

'

it determines natural frequency, but
cannot change the system damping

0.8

)

For steady-state (1f G(0)=1) we obtain -
Y(s) k,G(s) K, a2
R(s) 1+k,G(s)| = 1+k, “ T
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* PID controller: Proportional, Integral, Derivative

ok
[ 5) —>4—> L —-J:;E—-»r'c.«:- — E(s)—> & = 1;] ’Cf g
> ks " #lp
D-part

Step response of the
PID control element

k
Overall control law, with two equivalent parametrizations 7, =—=, T, = k—d
i p
0 de(t) 17 de(t)
u(t)y=rke(t)+k |e(t)dt+k =k,|e()+—|e(®)dt+T,
(O)=k,elt) + ki elde + k, = O+ [ewdi+T, =
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* PID controller: Proportional, Integral, Derivative, cont.

As transfer function

(with Bode diagram) C(s)=kp-| 1 + ST +5-Ty
P N’ D
) I |
[Cop(w)| 4
dB /i
Kp
- — > log(w)
27T 1/ T4
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* Principal impact provided by P, I, and D control terms

Output y

<
in

Input u

—
L
T

—

20

VV
10

Time t

20

(a) Proportional control

1, 2, and 4.

Output y

Input u
ra

ki
k=0
0 10
Time ¢

(b) PI control

20

Output y

4
.
£ 2
=
= OUde
- 1
0 10 20

Time ¢t

(c) PID control
source: [20]

Responses to step changes in the reference value for a system with
a proportional controller (a), PI controller (b), and PID controller (¢). The pro-
cess has the transfer function P(s) = 1/(s + 1)*, the proportional controller has
parameters k, = 1, 2, and 5, the PI controller has parameters k, =1, k; = 0, 0.2,
0.5, and 1, and the PID controller has parameters k, = 2.5, k; = 1.5, and kq = 0,
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* PID control in frequency domain

Standard structure

k
R P _s DS G(S) _—T—_O Y

For practical implementation

(for ensuring PID transfer function 1is proper, 1.e. no free differentiator of D-part)

CPID(S)zkp(lJr L, Las

with 7, T,
I's t,5+1

7, >0 time constant of low-pass filter
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* PID control in frequency domain, cont.

As transfer function: once in a parallel- and once 1n a serial-connection

K, 1 Ts+1)(T,s +1
CPID(S):Kp+ I+KdS=Kp 1+T—+Tds :KPID( s+ D55 +1)
S S S

with parameters relationship

|PID| K
-
K,
-term D-term
K
T, = —4
Kp
\.\ P-term
Kp - K » Kppl,;
T =T+,
’ - T
1/Ti 1/Td frequency T, = 172
I+T,
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* Loop shaping by using 2"-order approximation

Optimal open-loop transfer function in form of
K
T — L(s) =
_ \ § s(Iis+1)
2 10° |
o | \Q’glo Gm
10" S
—90 e K
5 -120¢ - L(s) = >
377 + 1 - s(Tis+1)
S -150+ s -
N 180 N

10 10" 10’
Frequency w [rad/s]

The still unknown parameters K, 7', of the open-loop transfer function L(s)

K 1
Ts*+s+K (T /K)s>+(1/K)s+1

L(s) = G,(s)=

Parameter 7, (as a time-constant) can be assigned first, by a control specification, since it
affects directly the bandwidth of the closed-loop control system. Then, one finds a suitable K
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Loop shaping by using 2"-order approximation, cont.

Magnitude optimum approach

G, (s)= > : with | K :L
(7, /K)s“+(1/K)s +1 2T,
1 1 ?
— Gcl(S): 2T2 2 2T 1 24’ 2 a)n
8T+ 2T s + _S 2,45 (1 s*+2lws+o’
a)l’l a)l’l
with o = and { =1 o, =L=O.7O7

J_T J2

This yields 2"-order system with damping {~0.71 = overshoot ~ 4.7%, that is mostly
acceptable and, even, sometimes desired in applications (when the plant’s damping is higher)

50

Open-loop in the range of 20 dB/dec |
K 1 1o =]
— L(]G))| = ! .\’\'“'\,
0, 2T 0, 2 0,
-100 : ‘ : >
= |L(o= a)cr) =~~~6dB @,=1/T| 1s the characteristic corner-frequency of

intersection between —20 dB/dec and —40 dB/dec
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* Optimal loop shaping with different types of controller

Some typical corner-frequencies for plant G, control C, and open-loop L

C(s): PI Sl . C(s): PID M C(s): P

G(S) PTj \ G(S) PT3 | | |
L(s): IT; \\ L(s): IT; : L(s): IT, :

G(s): IT

Cop(s) = Kpp (T, + DT, +1) , Cp,, = Kp(sT, +1) transfer functions of PID, PI controls
S sT,
G, (9) K fer f f d 0) pl
= transfer function of PT, and PT, (7= ants
P (st, + D (sz, + 1) (s7, +1) 3 2 (5=0)p
K . :
L(s)= transfer function IT, (integrator x 1% order system) of the open-loop L(s)
s(Iis+1)
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* Practical (hand on) session 6

Consider DC motor without load M, (from page 49)

Assume the following parameter values: R=1, L =0.0002, V¥ =0.04,
B =0.0001, J=0.00005

1. Design PI (proportional-integral) control of angular velocity, using an optimal
loop shaping. Here, determine first the integrator time constant, then the gain.

2. Implement the closed-loop system (system plant and controller), in either
MATLAB or Simulink, and show the controlled velocity step response.
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State feedback controllers and prefilter
extensions
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* Basic principle of state feedback control

—  System of n-th order has n roots which determine its natural response

—  Changing dynamics for each of n states means changing location of the roots

— This can be done by appropriate assignment of the state feedback gains

C

w(t) wu(t) x(t) x(1)
A [e—
v(t)
N P Su—

y(t) Here, consider first without

reference value, 1.e. w=0

u=—kx=—[k k,..k,]

—  Resulted state- and characteristic-equation:

X = Ax—bkx and det[sE — (A —bk)} =0 = roots are ‘placeable’

through selection of k
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* Motivating Example 15: control of unbalanced rod

A
— Linearized system dynamlcs " m TG SN @ cos d

. . i
B(t) — %rﬂ(t} = —7ér(®)

= §(t) — Ty(t) = —u(t)
—  As block diagram with b, = —1 & ¢ i
u* 1 | 0 1 | Y
ot T . B SO O 8
S S
g/l —

B ) z1(t)
State-space model ( E5i0) )

y(t) = (bo 0)( :”131(2 )

|
il
=
L Y

(o R
.
T,
bl =t
— —
4
o T M
"‘“"“-u—_—l-""“r‘II
-
o
=
"‘I\"“-i—_—l-"'“-"II
=

P i
e
“-u._.-r"*
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* Motivating Example 15: control of unbalanced rod, cont.

First, use standard PD control for balancing the rod
u =K,(w=3)+K,(w-y)

Closed-loop transfer function with new input = reference value, 1.e. (u=w)
_Y(s) —(Kps+ Kp) _ bs+b,
U(s) s?—Kps—(g/l+Kp) s° +as+a,

Polynomial coefficients

ap = —(g/l + Kp), a1 = —Kp. bp = —Kp, by = —Kp.
= Two control gains determine two roots of the characteristic equation

Closed-loop state-space model, already 1n controllable canonical form (!)

1) ) _ 0 1 r1(t) 0
( *«5’;(1) ) B ( g/l+Kp Kp ) ( ifr_l,(_f) )+( 1 )”(f)

y(t) = (~Kp —ﬁb)(jﬁjﬂ)
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* Motivating Example 15: control of unbalanced rod, cont.

—  Closed-loop state-space model with decomposed system matrix

(560) = (on 0)(26)+ (& 5)(20)+(1)x0

| B Il(f)
w0 = o0 (2 )

with k1 = —Kp, ko = —Kp, bp = —Kp and by = —Kp.
—  Corresponding block diagram ~ b
w e ¥ l Ta] i T by U
I\ 5 S

—  To recognize:
the (initial) system g/l
control input

¥

u =w+klx

— ,ILT]_ t
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* Motivating Example 15: control of unbalanced rod, cont.

—  System matrix of the closed-loop (in controllable canonical form)

o 0 1 (0 1Y\ [ O 0
=\ g/l+Kp Kp )] g/l 0)7\ -k —ko

\ J \ J
| |

—  Control-related term A Ay

0
Ay = —bk! = ( i ) ( ~ki —ks )

—  Let us evaluate here a numerical example
For the given % =1, design PD control with closed-loop poles z, , =[-1,-2]

Compute polynomial coefficients: with MATLAB poly ([-1,-21])

5 0 1 0 1 0 1
= s°+3s5+2=0 = A,= — _
DA g/l+K, K, -a, -—a, -2 -3

_ _ iven in C.C. form  what we want
= K,=-3, K, =-3 g fe
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* Control design via pole placement

—  Closed-loop control system (incl. feed-forward) in the state-space form
x(t) = (A —bk)x(?) +bVw(r)
y(t) = ex()

—  Control with 2 degrees of freedom: state feedback & reference feed-forward
u(t) =u, () +u,(t)=-kx+Vw

—  System dynamics
x(t) = Ax(t) + bu(t), y(t) = cT'x(t),

| » open-loop (plant) behavior
a(s)=|sl —A|=5"4+a,—18""  +---+ap

closed-loop (control

system) behavior

x(t) = (A — bkT)x(t) + bw(t), y(t) = T x(t),
ar(s) = |sI — A + bk’ |

—  Fordesired dynamics =  desired poles = characteristic equation

(8 =" L@, 187 4 o

Goal: determine such feedback gain k which provides ax(s) = a(s)
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* Control design via pole placement, cont.

—  Method by Bass-Gura algorithm source: [22]

Assume that the desired closed-loop poles are ¢, withi=1,..., n

(s — ;) = s" +ars" ! 4 aps" 2
i

=1
The open-loop characteristic equation of the original (given) plant model
d(s) =det(sl — A) =" + (?15”_1 ue ags”_Z s v @8 il

+ T Qp—15 T

= [a-a] =kCT for [a-a] =[(¢,—a),...,(a,—a,)]

with the controllability C, and Toeplitz matrices 7' (both invertible)

C=(b Ab ... A" 'p) e e il N
r 0 1 ady—1 s as s
0 0 1 e, 4 s
T = .
The resulted Bass-Gura formula: ; : : , i
: . 5 e dy—1
k:[a—a]TCr_lT_l \0 sws, aaE B L. 3
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* Control design via pole placement, cont.

— Alternatively, transform state-space model into controllable canonical form

—  For n-th order /[ 0 1 0 a s 0 \
systems: E 0 1 ' : :
T _ E : L0
Ac _bckc — _ '
- - = 0
() () 1
\ —(ao+Fk) —(a1+ks) —(ag+ks) e —(@p—1 + kn) /
L Y ) L Y ] \ Y ) L Y J
=&, =G =& =~

—  Example: to show the relation to the Bass and Gura approach

0 1 0 0 1
A:(_HD _m), h:(1> = C=(b Ah):(l _ﬂ_l)
0 1Y(1 m 0 1 _

= feedback: (k1 ko) = (a1 —a1 ap — ag) ( [1] é ) = (g —ap o1 —aq)
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* LQR (linear quadratic regulator) design by Riccati method

—  For the state-space model

x(t) = Ax(¢) + Bu(¢)
y(t) = Cx(2)

with state feedback control law

u(tr) = —kx(z)
consider design of control gains as an optimization problem

minJ
k

—  Assumption: the system is stable and steady-state-accurate

J = j (yv—y, )Zdl‘ objective function to be minimized
0
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* LQR (linear quadratic regulator) design by Riccati method, cont.

—  For steady-state values (denoted by subindex o), i.e. for x(¢) =0

x =—A"Bu_, y_ =C'x,

we 1ntroduce the new variables

~/

so that the objective function becomes
J = j P2t = j %' CCxdt
0 0

— Thus, the original problem is transformed to the regulation
towards the equilibrium state x_, starting from any initial state x

—  Next, introduce the weight matrix of the states

Q instead of CC T, to be placed 1n the objective function J

Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics page 157 of 245



* LQR (linear quadratic regulator) design by Riccati method, cont.

—  The corresponding resulted objective function

o0

J:IXTQth:I ! AtheAtdt—x Px,
0

0

with P = jeATt Qe dt

—  After partial integration of P one obtains

P=—QA'-A"[e*' Qe dt A

0

. J/

~
P

and, hence, one obtains the well-known Lyapunov equation

P=—QA'-A"PA"' = A'P+PA=-Q
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* LQR (linear quadratic regulator) design by Riccati method, cont.

—  For the closed-loop system with system matrix

A=A-BKk

consider the objective function
J = j x" ()Qx() dt with Q=0Q+k Rk
0

and R as weight matrix for control value(s) Q weights (“penalizes”) the states,
R weights (“penalizes”) the control

effort, i.e. energy consumption
—  Remark:
larger R weight matrix values = higher “penalty” for the control action =
less energy consumption and less workload of the control/actuator elements

—  For the global minima of objective function, it 1s required:

a—J¥O for i=1...m,j=1...n

ok

y with m inputs and # states
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* LQR (linear quadratic regulator) design by Riccati method, cont.
We also require the solution to be independent of the initial states
T
for J =X, PX,
oJ o
= —=Xx, —Xx,=0
ok, ok,

—  Take the Lyapunov equation of the closed-loop system
A'P+PA=-Q (1)
with A =A-Bk

Q=Q+k'Rk

Since both terms in eq. (ii) OAT OA 5(_2
are dependent of k = P+P—=—"—
ok, ok, ok,
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* LQR (linear quadratic regulator) design by Riccati method, cont.

some intermediate computation steps (omitted here)

Rk-B'P=0
—  Solving the above equation with respect to k results in the optimal control
k=R 'B'P (iii)

—  Putting equations (i1) and (111) into (1) results in
A'P+PA-PBR'B'P+Q=0 (iv)
Algebraic matrix Riccati equation

which 1s then used to calculate the P-solution for the given system
(A,B) and the specified (by control design) weight matrices Q and R

Solving Riccati equation means finding P solution of (iv) and then computing k by (iii)
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* LQR design by Riccati method: the related steps

—  Define the weight matrices Q and R (mostly with only diagonal elements)
* Increasing all g;; elements = faster total system dynamics, but
also higher control values will be required

* Increasing a particular g;; element = the dynamic behavior of
the corresponding state becomes faster (than other)

* Increasing of r;; values = suppression of the required control
magnitude (e.g. required in case of actuator limits/saturation)

—  Find the positive definite solution P of the Riccati equation
A'P+PA-PBR'B'P+Q=0

—  Compute the state feedback gains
k=R 'B'P

—  Riccati state feedback
controller minimizes

:lji [ r)OJu(r)Jru (7)) Ru(r )]
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» State feedback control: design of prefilter

—  State-feedback alone does not provide steady-state accuracy (!)

= Include reference prefilter V, which 1s 2-nd degree of freedom of control

w(t) u(t) x(t) x(t) y(t)

T
A —

x =(A-BK)x+BVw
y = CX 'l‘(f}

—  For steady-state, it 1s required x =0, y —w
= 0=(A-BK)x+BVw
y =w=0C(Cx
—  Solving the above eq. for x and substituting into the output eq. results in

= x=(BK-A)'BVw, = y=w=C(BK-A)'BVw
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* State feedback control: design of prefilter, cont.

—  For the required y —w = CBk-A)"'BV =E where E is identity matrix

—  Then, the resulted prefilter
V=(C(Bk-A)'B)"

* Extended prefiltering with reference comparison

R = AXe +Bu,, =10

A B
F D

r

) (

ol |

u

u

= Yoo — CTXOQ = I'o

D

Koo
U

source: [23]

J=(a5) (D)=

—

W

T +
K
xr -:l-

Xx=AXx+Bu
¥ =%

.
___,  Require for steady-state:

e.:,,: — KT' - X:.;: — 0

W.(r) =N

= (M=)
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* Integral control combined with state-feedback

—  Objective: extend the designed state-feedback control so that to have
the reference-output comparison (i.€. to have the output control error e)

— (1) to counteract the disturbances (d)

(11) to account for model uncertainties (A)

x(1) = (A +A)x(?) +Bu(t) + Gd (1)
y(t) =" x(?)

source: [4]
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* Integral control combined with state-feedback, cont.

— Introduce an additional state variable of negative tracking control error (e)

t
X, (t) = I edt new (additional) state
0

).CO (t) = CTX(I) — W(f) = e(t) state dynamics (derivative of L.h.s. and r.h.s.)

—  For zero reference (w=0) = control problem of a nonzero 1initial state

4

X, (£) = j Y(t)dt = j " x(1)dt

o) N\ _ (0 T\ wo®)\ (0,
(%)= (o %) ()= (o )

—  State feedback control law  u(t) = —( ko k’{ ) ( o (1) )
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* Integral control combined with state-feedback, cont.

—  Block diagram of the integral-state-feedback control

w

O

_f_

t

Plant

k]

X

Y
—

—  Overall closed-loop state-space model with reference

|

o

T
k,c

A-Bk,

—  Design of extended state-feedback control [k, k,’] , i.e. for the integral
error state and original system states, as before, €.g. by the pole placement
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* Practical (hand on) session 7

Consider DC motor without load M, (from page 49)

Assume the following parameter values: R=1, L =0.0002, V¥ =0.04,
B =0.0001, J=0.00005

1. Design the state feedback controller (by the pole placement) so that the poles
of the closed-loop system are located at 4, , = [-1000, —100].

2. For the designed state feedback controller from 1., calculate the prefilter in
so as to guarantee the steady-state accuracy.

3. Implement (in MATLAB) the closed-loop control system, once from 1.
without prefilter, and once from 2. with prefilter. Compare step responses.

Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics page 168 of 245



Feedback control systems
for mechatronics and robotics

1. Introduction to feedback control systems

1. Control-oriented modeling

111. Dynamic system behavior in time and frequency domain

1v. Transfer function analysis and state-space modeling

v. Similarity forms, controllability, and observability of the systems
vi. Standard output feedback controllers

vii. State feedback controllers and prefilter extensions

viii. Stability analysis and robust control design

1Xx. Motion-, force- and impedance-control in mechatronics and robotics
X. Use of observers and estimators in feedback control systems

Michael Ruderman
michael.ruderman@uia.no

Dec 2023 Course: feedback control systems for mechatronics & robotics



Stability analysis and robust control design
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* Motivating examples of stable and unstable systems

100 (?pen IOOP - 15t example of two systems
Open-loop transfer functions (e.g. plants)

0 ' 100

1(s) 11

100
. l l l l Py(s) = . .
0 1 2 3 B 5 (s +1)(sT + 1)2

t
Closed loop
3 l ]

Closed-loop transfer functions for the

! . above plants P, , (parameter 7=0.025)
aA e

>

p 27 0.000625s° +0.05063s> +1.055 + 101

1 —
s+ 101
Oﬂ \/ \/ \/ ' 100
| | | | T
0.3 0.4 0

0 0.1 0.2 k-

t
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* Motivating examples of stable and unstable systems, cont.

Open loop 2"d example of two systems
500 ' ' 7
/
400 2 | Open-loop transfer functions (e.g. plants)
= 200 2 - 100
” i
200 g [ Pyi(s) =
- = 1(8) S + 1
1007 Dl - 100
N — . . Py(s) = —
0 0.5 1 1.5 2 §— 1l
t

Closed loop

Closed-loop transfer functions
for the above plants P, ,

100

11(s) = S5 701
100
‘ ' ' ' 15(8) = — 49
0 002 004 006 008 0.1 s+ 9¢
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* Bode integral
source: [20]

—  Sensitivity function 1 :.Q I
E(j 1 -
Sy =YD .1 VAR
R(jo) 1+C(jo)P(jw) i =) | l
& _2 : -
0 e = |
—  For stable plants: jlog‘S(ja))‘ dw =0 =0 g 2 3
0 Frequency w [rad/s| (linear scale)

—  For unstable plants: j log ‘S ( ja))‘ do = ﬂz Re(p,), p,:the unstable poles
0 i

* Available bandwidth (QQ < o)

— 1s inherently limited due to:
i.  uncertain or non-modeled dynamics of the plant
ii. digital control implementation and power limits

1ii. nonlinearities and others const

Q)

Q
— jlog‘S(ja))‘da)z > ()
0
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* Interpretation of Bode integral source: [6]

Serious Design s.g
1{] i L] L] L L) 1 ¥ L L} T T L] i I T T

Sensitivity reduction at lower
frequency leads unavoidably (!)
to the sensitivity increase at

the higher frequencies

Log Magnitude S(jw)

—  “Serious” (but manual) design

0.0 0.5 1.0 1.5 2.0

Formal Design

—  “Formal” (automatic) design

More sophisticated (formal)
design tools can provide a more
“fine”” shape/contour of S(j w).
But the Bode integral will held!

Log Magnitude S'( jw

Freqt-Jen(::t,ur
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* BIBO (bounded-input-bounded-output) stability

—  For LTI systems, with the impulse response g(¢) and output
y(0) = [ gt —r)u(r)dz,
0

the BIBO stability requires that for any bounded input signal/function
the output 1s also a bounded signal/function:

‘u(t)‘ < maxu <o = ‘y(t)‘ < maxy < o

* LTI system with impulse response g(¢) 1s BIBO-stable iff

T‘g(f)‘d2'<oo — maxy:maxu.“g(z-)‘dz.
i 0

Recall that integration of impulse response yields the step response function

{—o0

h(t) = j g(r)dr. This implies for BIBO systems lim 4(¢) = const
0
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* Example of not BIBO-stable system: water tank

ODE of the system plant Apy(t) =u(?)
= G9=22-L o gn=—10)
u(s) Aps Ap

- |
= g(r)dr =——|1dt — o not bounded
!‘ ‘ Ap! )

* Example of BIBO-stable system: feedback-controlled water tank

ODE of the closed-loop system Apy(¢) =K, ( Vyer (1) — y(t))

K K (4p) K -r
— G(S)— y(S) P _ p( /0) — = (f)——pe Ao
ref(s) Aps+K, s+K (4p) Ap

K,
——L¢

= j\g(r)\df_1 e 1 bounded
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* Necessary and sufficient condition for stability of LTI systems

An LTI system is said to be stable if all the roots of the transfer function denominator polynomial have negative
real parts (i.e., they are all in the left hand s-plane) and is unstable otherwise.

source: [4]
4 Imiys)
STABLE UNSTABLE
1 t
X X
LLHP RHP
1 1
. > t > > >
- Rel(s)
Re{4,! <0 L
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* Root locus analysis for stability evaluation

Appliable to the open-loop transfer functions

L(s) = D(s)G(s)H(s) = 2

a(s)
source: [4]
i Controller Plant
R 3 ' oy
N Dis) G(5)
+
«—0 V
Sensor
His)

To check characteristic equation of closed-loop system in dependency of K

P) 0 = a(s)+ Kb(s)=0 = L@):—%

1+KL(s)=0 = 1+K

a(s)
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* Root locus analysis for stability evaluation, cont.

Ilustrative Example 16: loop transfer function G with one free parameter ¢

| -+ (,‘{S) — ] + ; given denominator of source: [4]

s(s+c¢) the closed-loop system

Same characteristic equation, now in the polynomial form
s 4+es+1=0

Rewriting the characteristic equation for root locus analysis

| %. b(S) = 5. ., 7
s“+1 = 1+C""+I:U
K =¢, a(s) = s> + 1, :
1.5
1 /ﬂ
: : g0
The solutions, in i = I | 5 {/
terms of the roots  r1, /2 = — Y - A . - \_
depending on ¢ - - 5 |

Real axis
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* Routh stability criterion

Used for evaluating the roots of characteristic polynomial, that determines
the location of poles, without solving explicitly the characteristic equation

a(s)=s"+as"" +a,s""+...+a,s+a,

* Necessary condition for stability by Routh criterion source: [4]

A necessary (but not sufficient) condition for stability is that all the coefficients of the characteristic polynomial be
positive.

* Necessary and sufficient condition for stability by Routh

A system is stable if and only if all the elements in the first column of the Routh array are positive.

For constructing Routh array:

arrange the coefficients of characteristic polynomial a(s) into two rows:
— first row beginning with 1 and followed by even-numbered coefficients

— second row beginning with a, and followed by odd-numbered coefficients
» 3

S 2 (K
N1 .
8 > &y a3 s
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* Routh stability criterion, cont.

Then, all subsequent rows of the Routh array are:

Row n g | a ai
Row n-—1 sh=1. a, | a3 as
Row n-—2 sh2; by | b b3
Row n-3 =3 c1 | e2 3
Row 2 5% - -
Row 1 5 *
Row 0 50
[ 1 ay | [ a1 a3 |
det a a— S b b\ l L
: | 3 ayda? — az | 2 2143 — A1 0?2
Wlth I)| —_— - - = —— gl === - _- =
aj ay b b
(1 ag ] [ ay as ]
det E det ‘
b a ds ayay — as | by b3 N blﬂs —ayb;
= — = = = — )= -
8 aj ay by by
a a
det| , o et [ M by } b b
a), ag ajag — a7 I 4 a7 — dybg
by = — e 3= — , - ; ;
aj aj 21 7]

If the elements of 15' column of Routh array are not all positive, then the number
of unstable roots (poles in RHP) equals the number of sign changes in the column.
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* Routh stability criterion: use for parameters/gains variation

Ilustrative Example 17 source: [4]

s+ 1
. V
. s(s — 1)(s + 6) v

Which feedback gain is required? (note that one pole 1s already unstable)

The characteristic equation

s+ 1 ,
= ().
s(s — (s + 6)

|+ K = s> + 552 + (K-6)s + K = 0.

The corresponding Routh array 1s

52 l K—=6
52 3 K
s (4K - 30)/5

sV : K.
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Ilustrative Example 17, cont.

: + s+ 1 .
. :
K sis — 1)(s + 6) =

For the closed-loop system is stable (i1.e. for Routh criterion is fulfilled):

-3
o O>O and K>0, = K>75andK > 0.

3.0

e |

source: [4]

oot P4

Time (sec)
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* Why phase response 1s as important as magnitude response?

Example 18: compare Bode diagrams of the 3 transfer functions

Magnitude log w
]- 7 T T T =
1 10 100 (rad/sec)
0.1- Gluls) =\ (100

 (s+1)(s+50)

0.01 - y |
lf!r.-'||'|' ‘w] -— — T : .__.—Illll!
0.001 -
0 1 10 100 , log w
| (rad/sec)
_ (s410)
—90 - SR Gmn(8) = (531) (3.0.50)
1 * i | / e A0S (a+10)
— 180 - =S k",.{"’-'““lﬂj'- )= [=113){s3-50)
_270 | -_ i e I .. - I- e : e =

Phase (deg.)
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Example 18: compare Bode diagrams of the 3 transfer functions, cont.

Now, consider these loop transfer functions but with additional gain K=70

Gm = Inf, Pm =125 deg (at 50.9 rad/s)

N
o
T

=
o

70 (s +10)
(s +1)(s +50)

G, (s) =

Magnitude (dB)
3 3 o

N
o
T

o

Gm = -2.75 dB (at 23.7 rad/s) , Pm = -33.2 deg (at 50.9 rad/s)

N

Phase (deg)
A
(&)}

20 f 1
S 10}
[0}
20 90 . ‘ ‘ ‘
S 10l 102 107" 10° 10 102 10
70 (_S _I_ 1 O) = Frequency (rad/s)
G,(s) = .
2 _ 360
(s+1)(s+50)
gy
Q
(2}
I 180
< =
o \ Gm = -0.616 dB (at 44.3 rad/s) , Pm = -21.2 deg (at 50.9 rad/s)
90 ' ' ‘ 207 ' : ' ]
102 107" 10° 10" 102 10°

=
o
T

Frequency (rad/s)

Magnitude (dB)
3 o

N
o O
T

70(s+10) ~0.05s

G3 (S) - C ~ 720} ‘ |
(s +1)(s +50) e \

_3600 I 1 1 1
1072 107! 10° 10° 102 10°
Frequency (rad/s)
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Example 18: compare Bode diagrams of the 3 transfer functions, cont.

The closed-loop response for G , ; (from the previous page)

1

G S 0:6
Gcl,l (S) — 1( )
1+ G,(5)
G, (s O
Gcl,Z(S) — 2( ) N
1+G,(s) =
G (S) e—0.0SS
G,.(s)=—
(/[,3( ) l—l— Gl (S) 6—0.055‘

o 1 1
0 0.5 1 1.5
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* Non-minimum-phase systems, 1.¢. with unstable zero(s)

Amplitude
1.0

Superposition of two PT,
elements, one with positive
and other with negative gain

G(s) = | B 2 _ 3—=s
s+1 s+5 |(s+1)(s+))
Amplitude
1.0 -
It can equally be interpreted as
i T 7 a negative derivative response
" / | 9 3 }fltime G(S) — 3 — S
' | (sec) (s+D(s+5) (s+1)(s+9)
=t (Gee)
—0.5 -

g(t)= 3(%et +;851j—i(let +_—165tj

Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics page 187 of 245



* Some shortcomings of gain and phase margins

Example 19: sufficient gain and phase margins, but (!) poor stability

0.38(s% + 0.1s + 0.55)

L(s) = _
(5) s(s+1)(s? +0.06s + 0.5)
L(s)
| G, (s5)=—=
source: [20] ! 1+ L(s)
j Im L(iw) 10" ——t 1.5 : :
y - AN E \J\ ==, ] .W%wwwm
/ \ . -1 ] -~
, Re\L(iw) 10 et s
T > -90 =
| | 3 Q05
. P i’
k-7 80—
1 0 0 ‘ :
10 10 0 50 100 150
Frequency w [rad/s] Time t [s]
(a) Nyquist plot (b) Bode plot (c) Step response
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* Why sensitivity function S 1s then so important?

Consider the open- and closed-loop systems with the same disturbance d

d n
Ysp =0 u x Yol
—» C Sl P d 4
Ysp=10 e u x Yei
Y ( ) ( ) 1 —» P —
(S) 1+C(s)P(s) T

1 |-

U

Disturbances with frequencies @ such that |S(iw)| < 1 are thus attenuated by
feedback, but disturbances such that |S(iw)| > 1 are amplified by the feedback.

4 Im G (iw)

* Maximum of sensitivity function magnitude
| S| can be seen as a stability margin (M)

1
1+ Pliw)C(iw)

1

M, = S(tw)| =
maxl (lw)| = max T Giliw)

‘—max

!
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* Stability margin

Consider shortest distance s,, from the Nyquist curve to the critical point —1

| Im L(iw) 10" S —
. . I T e
Remark: stability margin e S~ s 10 |
: / — 0g10 9m
frequency lies between the / " o'l \L o
gain-crossover and phase- -1/ —1/gm Rebiw) gy
crossover frequencies ko> , 3 -120F y
\Fm\ // o =130 ©m i
. N 180
S L ;i oseenia W
10" 10" 10’
Frequency w [rad/s]

From the sensitivity

function’s viewpoint source: [20]

10" ¢ —————
1 : | Im
S(s)=—— : -
1+ L(s) S B

SARTIE: i

B o | e
Recall that the control error has: [ : :

107! Y T
_ . 107! Wse Wms 10° —

Er (S) - S(S) I’efel’ence(s) Frequency w [rad/s]
E, (s)=S(s)G(s)-disturbance(s)
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» Stability margin for plant variations

If within nominal loop function L = CP
the plant P 1s varying as P+ AP

Then, the open-loop transfer
function changes to CP + CAP

For the plant variations AP,
each point A on the Nyquist
plot changes to a circle of the
points B with the radius CAP

L(jo)

Then, for not violating the critical point —1, 1.e. for not

destabilizing the closed-loop control system, one needs to ensure

1+ L
ICAP|<1+L] =  |AP|< -
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* Unstructured uncertainties of the plant transfer function
are equivalent to the perturbations in frequency domain

— Additive perturbations

— G,(s) = Go(s) + A(s)

+
» Gy 4+'<)5 -

—  Inverse additive perturbations

A e

5 G, -

&/
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* Additive uncertainties in frequency domain

Example 20: Nyquist plot of the open-loop G, with uncertain parameters

Gp(s) =

With circles
of additive
uncertainty

A

-

 m

(3%

Ve

A

L w=2
{Y w=0.01
1 \:

source: [21]

L peeeefezt
[ |
|
\
N\
\
g

B b o oo o o e -

2N

h

N
\C

ey — 7 Re
Ny </w_() (n}\ ' (

Gp(s) = G(s) +wa(s)Aa(s);

One can approximate such regions by circles,
resulting in a (complex) additive uncertainty

Aa(jw)
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* Practical (hand on) session &

Consider DC motor with position (!) output ¢ (from page 49)

L R
Assume the following parameter values: 0 J
R=1, L=0.0002, ¥ =0.04, { ; ()2
B =0.0001, J=0.00005 ’ M

1. Assuming the proportional feedback control (with K, gain) of position,
determine the loop transfer function, while K, > 0 1s first unknown.

2. Use the Routh stability criterion for determining the range of possible K.

3. Now, the range of possible K, and, therefore, the stability of the closed-
loop control system must be analyzed by using the root locus.
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Motion-, force- and impedance-control in
mechatronics and robotics
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 Relation between motion- and force-control

Totally imposed force (X all forces) in a mechanical controlled system

F=g(x,x,t)

oF

Stiffness of the controlled motion system K = —

Ox

Ideal motion control _ Ideal force control
K — o K —>0

(varying) impedance control as a ‘trade-off” in-between

Often used in applications to switch between motion- and force-control

/A

source: [17]
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* Relation between motion- and force-control, cont.

Stiffness of motion as
one of the main features
of the controlled system

k=
oX

Motion-Control __
TEChI‘IIques of b s
Today and Tomorrow

A Review and Discussion of the Challenges of Controlled Motion

F ref

dll *
K—0

(@)

Frel

< 5t
F, X
—
(b)

VoSS

K—

(c)

FIGURE 1 - The stiffness of controlled motion for the (a) force, (b) impedance, and (c) position
control. The motion stiffness increases from the left to the right, while the flag represents the

reference set value.

source: [24]
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* Motion and force control example in mechatronics

— Hybrid control framework lw()
oy Ulx=Ax+bu+f| ¥
— LPF [~ clh)x “—.»

— Control law ||
FF -
Ue = FFT(’I) — k(h)xe I ) < [ 4%-
r(h)
X, = [X*, 6]

source: [26]
X = (z,2,Pr,Fr)l  k(h) = (K1, K2, K3, K4, K;)

— Overall hybrid control system (with affine term due to system linearization)

= A(h)X + b(h)r(h), i = [ 1" @ = |¢.. 10
y = ¢(h)X.
.oTx] <. & [Ae £]. [be]
=[] = A enr= A Ess [
—  Switching state for changing between position and force h=[-1,1]
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* Motion and force control example 1n mechatronics, cont.

Hard Stop Environment (experiments)

0.1
E 0.08
G 0.06
2 0.04

0.02

6000
4000

2000

Force [N]

-2000

4000

Control Mode: Position
Position:0 [mm] .

I NI

6 8 10
Time [s]

6 8 10
Time [s]

source: [26]
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* Principles of impedance control

Feedback linearization resulting
in a double-integrator plant

D(x)&+h(x, ¥)~F=JTu
u=JT(D(x)a+h(x, X)—-F)

X=a=v

source: [24] Fig. 1. Inner/outer loop control.

FLPLLLLL PP LLLLLS
(a) (b) (<)
Fig. 2. Environment types. (a) Inertial. (b) Resistive. (¢} Capacitive. source: [24]
Rt " © Envionmens | )
z, | :

3‘:
'\/\(}V"‘
3
TR I
o

Fig. 3. Position-control model. Fig. 4.

Force-control model.
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* Principles of impedance control, cont.

Robot and environment are coupled through interaction ports
Vo -V

Product of port variables, V' 'F, constitutes +—
the instantaneous power. The integral of this R Environ-
. D . obot F
1s the energy stored or dissipated 1n network B S
o -
/ VI(o)F(o)do
0 source: [17]
Relationship of effort and flow variables in 70— £8)
network can be determined by impedance operator " V(s)

Example: mass-spring-damper system Mz + Bx + Kz = F
Z(s) = F(s)/V(s) = Ms+ B+ K/s

Z(©O)=0 |Z(0)| B with 0<B<w Z(0)|=
Ty k
F— M| F o )= FW
— = /—\/;\;—/
(a) Inertial (b) Resistive (c) Capacitive
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* Inverse dynamics control in robotics

l source: [5]

L + T ] < B
— H(g) r@ » Manipulators .
+ q

C(q.4)q + 14(q)

Consider the control input

r = H(q@)v+C(q.§)§+T:(q)

Substituting 1t into manipulator dynamics yields a double-integrator plant
="

Then, the outer loop can be arbitrary shaped with simple (e.g. PD) control

V=¢4+ K‘v’éq +KP€c]
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* Inverse dynamics control in robotics, cont.

With the position control error e,=g,—¢, the error dynamics 1s

Eq e Kvéq G KPEq =0
The total control law 1s then

T = H(Q){Ejil +K‘Jéq‘|'KPeq)+C{qJ})é+rg(q}

Achieved is the system linearization through: (1) feedback of nonlinearities
and (11) control input transformation (via state-dependent inertia matrix)

LINEARIZED SYSTEM

trajecTory | 7 OUTER LOOP

PLANNER CONTROLLER

INNER LOOP

e - ROBOT —'%
CONTROLLER

—

T = H(q)a, -r—C(q.q")t}-I-Tg(q)
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* Robot control with feed-forwarding: example architecture

path 0, »  robot model-based
planing » model
&
trajectories | ¢
generation / L. +4¢ T
> joint o) >
: » control ~
Gd [ N
0
0
0, 0) position J:/\T .
Yl control - -
. ‘\
0, : :
_ velocity 0 |0
N control
N gain scheduling |«
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* Independent joint control

Rigid drive chain (lumped inertia)

T

with DC motor as joint’s actuator
Ja - JS
. \J v,
Corresponding (extended) o m
electro-mechanical model B,,
(Ls+ R)Iq(s) = Vi(s)— Ifbs(-)m(s) source: [17]
(Jms?2 + Bms)Om(s) = Kilu(s) —1e(s)/r
T1/7
V(S) s 1 Ia(s) K +/L_ 1 1 9,1(8)
N7 Ls+R Vi N> Jms+Bm, s
Ky
Transfer function without external load
Om(s) _ K K
Vis) S [( Ls+ R)(Jms+ Bn) + Kme]
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* Independent joint control, cont.

—  Reduced-order model with (already regulated) torque as mput

‘]Cffkémk =+ Beffké'm;‘. = Uk — dk d
Bess = By + Ko Km, / Ri u -i-i_ 1 1 O
— | Jerrs+Bers 12—
ur = Ko, k / Ry Vi,
d source: [17]
—  PD control 5 /b 9
" 1
+<>— i s Ko I +W Js* + Bs
U(s) = (Kp+ Kps)(©%(s)—0(s))
Kp+ Kps 4 1
= dig) — D(. —
O(s) ) ©%(s) ) () D=d
Q(s) = Js*+(B+Kp)s+ Kp
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—  PD control, cont.

Control error transfer function

E(s) = ©%s)—0(s)

. .]82 —+ Bs d ] 1 ,
— 5] O%s) + Q(.s-)D('S)
Characteristic polynomial of the closed-loop transfer function
2 (Beff—FIlD)S_'_ Ko — 24 Uws +w?
Jers Jers

Exemplary values for critically damped (1.e. {=1) control design

Natural Proportional | Derivative
Frequency (w) | Gain Kp Gain Kp
4 16 7

8 64 15

12 144 23
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—  PD control, cont.

Control performance

without disturbances, 1.e. d=0 with disturbances, e.g. d=const
12 12
o=12 D=
10 10 w=12

Step Response
=2}

Step Response
(=2}

4t 4}
2t 2}
0 1 1 1 0 1 1 L 3
0 0.5 1.5 2 0 0.5 e Isec) 1.5 2

Time1(sec)

source: [17]

There is a need for an explicit compensation of disturbances
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* Applying PID control

i i : Ky
C(s) = Kp+ Kps+ —
. S
- I\SI d
9(1 + . g ¥ g W= 1 1 Om
™ Kp T Jesr5+Bess r
Kp =
source: [17]
Motor Olltpllt response 17 Response With Integral Control
(I\—]_)S2 + [i—pS -+ I‘—I) d S
O,.(s) = -O%(s) — — (s 10
& % (s) O mmP
2 8
Oy = Jegps® + (Begs +Kp)s® + Kps + K1 g
(04
- o : , g 4}
Routh stability criterion for the integral gain Z
2.
K < (Berr + Kp)K,
I 0 A A A A A
Jeff 0 05 Tim1e'5(sec)2 a5 3
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* Effect of joint elasticities

Jgég ‘o Bgé)g = k(@g — Qm) =
Jbm 4 B — k(0p — 0,) = u

B source: [17]

((8)0¢(s) = kOp(s) pe(s) = Jis*+ Bys + k
Pm(8)Om(s) = kOy(s) + U(s) Prs(3) o™ 4 B,.s + k

I

1 k
U —O— 0 =

Orm
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» Effect of joint elasticities, cont.

" 0
i K,+ Kps +é > 1 43 ; k’i > Ql

source: [17]

\
When using motor |
feedback for control 1 -
| s
1 /
'!
é O -» E L3
L \ 7
Root locus (i.e. poles location | e |
. . . 2t S P
/ trajectories) depending on
the K, control gain
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» Effect of joint elasticities, cont.

source: [17]

k- -
" 0
. n e 1 m k s,
T K, + Kps + P >
_ o b Pm(s) pi(s) -

When using load i
feedback for control i

Imagina y Axis
=)

Root locus (1.e. poles location
/ trajectories) depending on
the K, control gain

Real Axis
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e Position control with motion stiffness

X et
Actuator dynamics with 1DOF

Ji(t)+ Bx(t) = u(t)

Assuming PD-control with K -gain as ‘stiffness’

u(t) =K, (X" (1)-x(1)) - K,x(1)

Closed-loop system dynamics

Ji(0)+(B+K,)x(t)+ K, x(t)= K, X" (1)

Equivalent natural behavior )
x(s) W,

#(f) + 200, 5(1) + @2 x(t) =0 =

X(s) s+ 20,5 + W,

B+K K
with 25(()02 7 d, , = 7
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e Force control with interface stiffness

[Eref
Same actuator dynamics, but after stiff contact
Ji()+Bx(t)+ K x(t) =u(t)
%—J
environmental
counter-force
Assuming force control with the measured F K—s0

u(t)y=F" ()-F(t)=F" (t)- [-Kx(1)]

'stiff’ sensor on
contact interface

Closed-loop system dynamics

Jx(t)+Bx(t)=F" (1)

At steady-state: contact force = F'¥ ()

At impact: velocity = I &4 (t)B -
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* Position and force control in common impedance structure

Example 20: Simplest IDOF dynamics e &
Mi=u—F {
L M= 3
If u=0, then a pure 1nertia with mass M T
If control u as force feedback term u=-mF, S S S
M source: [17]
Mi=—-(1+m)F = P = —F
1+m

This results in changing the apparent inertia in system from M to M/(m+1)

* Advantage of separating the position and force control:
a, as a function of position and velocity only, and a, as a function of force only

* [dea behind impedance control (as acceleration a-control) 1s to change the
apparent inertia, stiffness, damping through the assigned feedback parameters

a, = z%— Md_l(Bdé + Kgqe + Fp) e is position error,
F’, 1s the force error

af:Fe
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* Practical (hand on) session 9

Consider the single rigid robotic joint

The system dynamics is described by
JO +BO+m g Lsin(0) =u,

with the driving torque u, total lumped 1nertia
J, mass of the link m, distance to COG

(center of gravity) L, and damping coefficient
B. The gravity acceleration constant 1s g=9.8.

Further assume the parameter values: J =0.1, B=0.05, m=5, L=I.

1. Draw the block diagram of the system. Make the corresponding Simulink
model and show the open-loop step for a steady-state close to &= 90 deg.

2. Design a feed-forward control for the gravity and damping terms. Then,
design a PD feedback control, so that the closed-loop system has a critical
damping 0 =1 and natural frequency @,=6 rad/s. Show the controlled
response for 0 deg < 0,,,= 45 1 <90 deg. How will it change for double m?
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Use of observers and estimators in
feedback control systems
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Luenberger state observer

Observing the State of a Linear System

DAVID G. LUENBERGER, STUDENT MEMBER, IEEE

Summary=In much of modern control theory designs are based
on the agsumption that the state vector of the system to be controlled
is available for measurement. In many practical situations only a few
{rutput qu.nntltms are avallahle Apphc.atmn nf thmnﬁ which assume

th;u pap-ar 1t is ahuwn thnt the stute vectur of a hnear sgstem can be
reconstructed from observations of the system inputs and outputs.

It is shown that the observer, which reconstructs the state vector,
is itself a linear system whose complexity decreases as the number of
output quantities available increases. The observer may be incorpo-
rated in the control of a system which does not have its state vector
available for measurement. The observer supplies the state vector,
but at the expense of adding poles to the over-all system.

Received November 2, 1963. This research was partially sup-
ported by a grant from Westinghouse Electric Corpaoration.

The author is with the Department of Electrical Engineering,
Stanford University, Stanford, Calif.

96

techniques have been developed to find the function F
for special classes of control problems. These techniques
include dynamic programming [8]-[10], Pontryagin's
maximum principle [11], and methods based on Lya-
punov’s theory [2], [12].

In most control situations, however, the state vector
is not available for direct measurement. This means
that it is not possible to evaluate the function F[y(t), ¢].
In these cases either the method must be abandoned or a
reasonable substitute for the state vector must be found.

In this paper it is shown how the available system in-

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. Ac-16, No. 6, pEcEMEBER 1971

An Introduction to Observers

DAVID G. LUENBERGER, sEN1OR MEMBER, TEER
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* Asymptotic observation principle

u(t) Plant y(?) 4 Observer x(t)

——P p———

{A.b,c} — {F.g.L}

%(t) = Fx(t) + gu(t) + Ly(t)

—  We require that
Xi(s) _ Xi(s)
= = 7= =l Ti,
Uls) Ul(s)
with

X(s) = (sI — F)"![g +LcT (sI — A)~tb]U(s)
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* Asymptotic observation principle, cont.
(sSI—A) 'b=(sI—-F) g +Lc’ (sI — A)'b]

I—(sI—F) 'L |(sT— A)"'b = (sI - F) g,

(sI—A) b= (sI—-F—Lc!) g
—  Incase that g = b one obtains:

FeX —16"

system matrix of observer

—  The resulted observer dynamics

x(t) = (A—Lch)X(t) + bu(t) + Ly(t).
= Ax(t) + bu(t) +L(y(t) — y(t)).
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* Luenberger observer structure

—  Block diagram and signal flow when designing observer

u(f)

—  Then, shape the observer dynamics (via pole placement) by feedback L
(observer ~ model + feedback of observation error y(7) )

ay (H) = |HI — A+ LCT‘ =, (lp {H) — {ﬁl'( '-,) : desired observer poles
(design specification)
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* Luenberger observer structure, cont.

u(t)

Dec 2023, M Ruderman
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—  For the observer’s state equation

2(t) = (A = LO)X(¢) + Bu(?) + Ly(?)

evaluate the state error dynamics, i.e. dynamics of €(¢) = X(¢) — X(¢)
e(t) = (X(t) X(1)) =

= Ax(t) +Bu(t)— AX(t) —Bu(t) - LC(x(t) - X(?)) =
=(A-LC)(x())-x()) =

l é(t)=(A-LC)e(r) V e(0)=x,—X,

This is valid for all initial values
under one and the single condition:
all eigenvalues of (A-LC) <0

— hmHe(t)H =

[—>00
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* Observer design by pole placement

—  Consider observation problem as a state feedback problem

—  Take the transpose (“/”’) matrices (A, C, L) and transformed (“x,”) states
(A-LC) =A"-C'L" =
X, (1) = ATXT (1) + CT“T (7)
Ur (1) = _LTXT (¢)

—  Determine the natural behavior of (A—LC) through L-matrix assignment

—  Consider the given XO (l‘) — AOXO (t) + BOu(t)
system in observable .
canonical form: y()=C,x,(?)
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* Observer design by pole placement, cont.

(0 0 ... 0 —q, (1)
1 0 ... 0 =—gq [
A, =10 1 ... 0 —a, |, C(T)z(() 0 ... O 1), L=| :
S I
0 0 ... I —a, ) 7, )
—  Assignment of observer gains
(0 1 ... 0 0
0 0 0 0
A,-C,L' = L :
0 0 0 1
\—a — —a, -1 —a, =l —a,,—1I
= —Q, = = -, =—a,,
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» State feedback control with Luenberger observer

—  If the state vector 1s not w
(or only partially) available =

—  Use the observed states instead
of the real (measured) states

—  Ensure a fast convergence of the
observed states (observer dynamics)

—  State feedback control with estimated (observed) states

X?
u Y

? plant
—» observer («——

K e—1 X

u(t) =—-Kx()+Vw(t) = u(t)=-Kx(¢)+ Vw(t)

—  Observer dynamics

X(7) = (A —LOX(®) +Bu() +Ly(1) =

(1) = (A - BK = LO)X(¢) + BVw(t) + Ly(¢)
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« State feedback control with Luenberger observer, cont.

(1) y(1)

=

Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics page 229 of 245



* Separation principle
—  Include observation error as a dynamic state into the state-space model

(1) =(A—-LC)e(?)

—  Resulted overall system dynamics

(1)) _(A-BK  BK \(x() (BV "
= W

er)) | 0 A-LC )l e®) 0
- x())  (x(0)) [ x,
y(t) = (C 0) e(r) with e(0) = X, — %,

—  {eigenvalues} = {eigenvalues of A-BK} U {eigenvalues of A-LC}

—  Observer does not change the natural behavior of the state-feedback
control loop = no impact on the control system stability (!)
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» State-feedback control design with observer — procedure steps

—  Examine the system controllability and observability (e.g. Kalman)

—  Design the state feedback control, 1.e. determine the gain matrix K for
measurable state vector (e.g. pole placement or Riccati / LQR method)

—  Assume the observer poles to be “far” left from those of the closed-loop
system, 1.e. observer dynamics to be “faster” than the control dynamics

—  Determine the observer feedback L (similar as when designing K-feedback)

N\
Im

«— {4} of observer —»
Re

v

faster convergence of
eigendynamics (of observer)

intensity of measurement
noise (noisy output y)

dominant eigenvalues of the
closed-loop control system
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e Kalman filter

A New Approach to Linear Filtering
and Prediction Problems'

R. E. KALMAN
Researc h Institute for Advanced Study,? The classical filtering and prediction problem is re-examined using the Bode-
Baltimore, Md. Si representation of random processes and the “state transition” method of

analysis of dynamic systems. New results are:

(I} The formulation and methods of solution of the problem apply without modifica-
fion to stationary and nonstafionary stafistics and to growing v and infini
memory filters.

(2) A nonlinear difference (or differential) equation is derived for the covariance
matrix of the optimal estimation error. From the solution of this equation the co-
efficients of the difference (or differential) equation of the optimal linear filter are ob-
tained without firther calculations.

{3) The filtering problem is shown to be the dual of the noise-free regulator problem.

The new method developed here is applied to two well-lmown problems, confirming
and extending earlier results.

The discussion is largely self-contained and proceeds from first principles; basic

Ssource. [ 2 8] concepts of the theory of random processes are reviewed in the Appendix.

Transactions of the ASME—Journal of Basic Engineernng, 82 (Series D): 35-45. Copyright @ 1960 by ASME

—  Further developed extensions/approaches

Extended Kalman Filter (nonlinear systems, linearizable)
*  Unscented Kalman filter (nonlinear systems, e.g. non-linearizable)
Kalman-Schmidt Filter (reducing dimensionality of state estimate)

Kalman-Bucy Filter (time-continuous systems)
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 Kalman filter as state estimator

—  State-space representation

(1) = Ax(0) + Bu(t) + v({)

process noise affects the dynamic states

Y (t) - Cx(t) + w(?) measurement noise affects the output value

Process noise Measurement noise

J'v W
u § 2 b 4

> Plant > >

— Kalman filter [«

l X, Vi
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e Kalman filter versus Luenberger observer

—  Luenberger state observer is used for deterministic systems

dj;(:) = Ax(t) + Bu(t) + L(y(1) — Cx(1)) e(t) = x(t) — x(1)
with estimation error dynamics and constant feedback gain
e(t)=(A-LC)e(r) L

—  Kalman filter (state estimator) 1s used for stochastic disturbances

dx(1)

g = Ax(#)+ Bu(t) + L(v(1) — Cx(7)) e(t) = x(1)—x(1)
with estimation error dynamics and varying feedback gain
e(1)=(A—LC)e(t)+v(t) —Lw(t) L(1)

where v(¢) : process noise

w(t) : measurement noise
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« Kalman filter as state estimator, cont.

—  Noise processes should be Gaussian processes (Gaussian noise), that means

i.  zero mean value, E { () } -
11.  variance towards infinity, var { v(t) { v(t)—-v } =010
iii. sequential values should {v(t) v(t)} — 5 { v(t)v(t)' } O5(t—1)
be not correlated )Y {w(t),w(t)} = {w(t)w(t) } Ro(t—71)
cov {w(t),v(f)} =0
Q: covariance R: covariance 0. 1mpulse (Dirac) function

matrix of v matrix of w

—  Reminder of correlation: p= +1: fully correlated; o= 0: fully uncorrelated
2

cov(X,Y) _ Oxy
\/ var(X)var(Y) o0, ’

correlation coefficient: p , = Py y €[-11].
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« Kalman filter as state estimator, cont.

—  The feedback (Kalman) gain L has to be selected so that to minimize
the mean square of the state estimation errors e

min, le E{e’} =min, Zl: lim, % TT e’(Ndt  e(t)=x(1)— (1)

—  Optimal feedback (Kalman) gain 1s given by (similar as LQR design)
L=PC'R"
where P 1s the positive definite solution of matrix Riccati equation

AP+ PA'-PC'R'CP+(0=0

—  Unlike the Luenberger observer where L 1s determined once and
remains constant, the Kalman filter updates L at each iteration step

—  Matrices Q and R describe the dispersion (i.e. variance) of the
stochastic disturbances v and w
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* Kalman filter: two-steps scheme

—  Iterative predictor-corrector algorithm

*  A-priori state estimation based on the previous state value and model
*  Measurement of the state (that contains errors)

*  A-posteriori state estimation based on measurement & a-priori estimate

1) Predictor phase denoted as Time-Update
2) Corrector phase denoted as Measurement-Update

Kalman Filter

Start " Time Update | "| Measurement Update
Model- output measurement
based |
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* Kalman filter: two-steps scheme, cont.

—  Iterative evaluation of the estimated state, and of the variance (which
1s then equivalent to uncertainty) of the states estimate

Prediction step

Prior knowledge
of sta%e = l?k_llk_l —» Basedone.g.
‘ Xk—1]k—1 physical model
Next timestep Ifk|k—1
k—k+1 Xk|k-1
P k|k Update step Measurements
ik| . Ctompare prediction -e— Vi A ®
0 measurements

.

Output estimate
of state

Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics page 238 of 245



* Kalman filter: assumptions

Stochastic error vectors

°
S

—  Process noise v :

o
w

. Transformation error of the
transition x,_; — x,

p(v) ~N(0,0) : normal (1, c°)
1.e. Gaussian distributed

Probability Density
=] o
- 3% ]

Q 1s covariance matrix of v,

—  Measurement error (noise) w, :

Deviation of measurement y, from the “true” system output
p(w) ~N(0O,R) : normal (Gaussian) distributed

*  Ris covariance matrix of w;

—  Simplification:

QO and R (as design parameters) can be assumed as constant

Dec 2023, M Ruderman Course: feedback control systems for mechatronics & robotics page 239 of 245



* Kalman filter: equations

—  State vector in discrete time notation

X, =Ax, +Bu, +v,

X, 41 :nextstate (time step k+1)

X, : previous state (time step A-17)

A : transformation x, — x,,; (like the system matrix for 7)
B : transformation u, — x, (input coupling vector)

v, . process noise

—  Measurement (in discrete time notation):

Y, =Cx, +w,

Vi : recent measurement (at time step k)
C : transformation x, — y, (like the output coupling vector C)
w, : measurement noise
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* Kalman filter: equations, cont.
—  Covariance prediction (per definition)
- - T
Py, =E ((wk+1 — g1 k) (Trr1 — Thoak) )

E ((Ak(zp — &k) + vi) (A(xr — &x) +vi)")
(AI. () — k) () — Tf )TAT)
(4

k(X — @y, )'v,l + v (@) — mA)TAA ) + B (vkv{)

J

= ()

—  Due to linearity of £ and independence of v, from x, and x, , 2™ term is zero

—  Resulted covariance prediction
PlH—ch = AkE ((.’Bk — C%;\)(CL'A — LAB;J)T) A{ + E (kaZj)
— AkszA;‘C - Qk
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* Kalman filter: equations, cont.
Time-Update
—  A-priori estimate of state vector x and error covariance matrix P
i1k = Arxr + Bruy
T
Pk—l—l“{ — AA»P[{AA, + Qk

Measurement-Update

—  Kalman gain L and a-posteriori estimate of the
state vector and error covariance matrix (P)

T T —1
Lk+1 PL?+1|A‘.CA‘—|—1(Clx’—l—lpk+1|kck+l T Rk+1 )

k+1 Xk+1|k + L, , (yk+1 -C Xk+1|k)

Pyi1=Prw— L, Crt1Pryk

e
|
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* Practical (hand on) session 10

Consider DC motor without load M, (from page 49)

Assume the following parameter values: R=1, L =0.0002, V¥ =0.04,
B =0.0001, J=0.00005

1. Using the state-space model of the system, design the Luenberger state
observer for estimating online the motor current state. The observer poles can
be placed within a range [-4,,..., —0.54,], where —4, is the system pole which
corresponds to the eigenvalue of the motor current.

2. Implement in Simulink the system plant and the designed Luenberger state
observer. Compare the trajectories of the system state and estimated state for
different initial values and, also, when there 1s some motor torque disturbance.
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