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Abstract—This paper presents a frequency-domain experimen-
tal setup for modal analysis of mechatronic and suspension
system components. Design, instrumentation and dynamic be-
havior of the one degree-of-freedom (DOF) system, capable of
providing both, periodic and application-specific, excitation forces
is described. The excitation is realized by an electromagnetic
modal shaker with additional assembly and interface components
designed and instrumented for frequency-domain analysis of
vertical dynamics. Frequency response functions (FRFs) of the
implemented system are experimentally measured and the asso-
ciated basic model parameters are calculated, correspondingly
identified. Accurate fit between the measured FRFs and modeled
dynamics is shown for sufficiently large frequency range 0.1–
30 Hz of the mechanical system response. Exemplary standard
road profile excitations are also conducted to demonstrate the
applicability of the designed system for frequency-domain testing
of components in the vehicle suspension systems.

Index Terms—mechatronics, system identification, systems and
signal analysis, modal testing, instrumentation

I. INTRODUCTION

Experimental study of structural dynamics provides a major

contribution to understand and cope with the many vibration

phenomena [1], [2]. Increasing demands of safety and reli-

ability of the embedded mechatronic parts, especially where

the varying and broadband loads are involved, require a better

understanding of dynamic properties and response of those

components, also within whole assembly. Modal testing tech-

niques have been used for decades for determining the nature

and extent of vibration response levels, e.g. measurement

of the material properties under dynamic loading, such as

damping capacity, vibration decompositions [3], and structural

health monitoring and fatigue endurance [2]. Recall that the

objectives of modal testing are in determining modal properties

for a structure, among which are the natural frequencies,

damping factors, and mode shapes [2]. Via signal analysis,

the vibration response of the test subjects, or specimens, under

controlled laboratory conditions is measured and transformed

into frequency response functions (FRFs), mostly using Fast

Fourier Transformation (FFT) techniques. Typical excitation

signals can be impulses, sequential sinusoids and alternatively

multisine signals, swept sine or chirp, and others.

Modal analysis has numerous practical applications and, in

particular, essential investigations have been often reported

for aeronautical and automotive e.g. [4], civil e.g. [5] and

mechanical e.g. [2] engineering. In automotive engineering,

apart from structural design and safety aspects, the suspension

systems and their multiple mechatronic components are of

keen interest. Comfort and road-handling performance of

ground vehicles are mainly determined by the damping charac-

teristics of the suspension systems, either passive, semi-active

or active [6], [7]. Widespread state-of-the-art approaches in

suspension system design have been relying on the quarter-car

model for describing the interactions between the suspension

system, the tire and the chassis in a single corner of a vehicle.

It represents only the vertical motion of vehicle body and

wheel, hence the vertical dynamics of vehicles can be easily

investigated by using such models [6], [8]. Due to research

conduct on improving the road performance of suspension

systems, and also due to a continuing increase in the efficiency

and compatibility of integrated and embedded mechatronic

systems in automotive, more and more innovative and original

technologies emerged as available for active and semi-active

suspension systems [9].

The development and prototyping of these new concepts is

well tied along with several experimental studies to prove the

feasibility and reliability of such innovative system, even in

a reduced scale, as reported in [10]. Quarter car test rigs are

commonly used for the study and design of active and semi-

active suspensions. Most of the experimental setups consist of

a wheel, a sliding cantilever representing a quarter of a car

body mass, and in between a spring and an active damper

with bushing and respective links, cf. [10]–[14]. Although

being able to support the full corner of a ground vehicle,

the adherent increased complexity of having the full corner

suspension leads to added difficulties in characterizing the

experimental setup: the necessity to account geometric non-

linearities, the precondition of using accurate tire models,

having a higher number of system parameters to identify, more

model uncertainties, to name a few, cf. [12]. This leads to a

more difficult and complex task on identifying such extensive

setup, especially when the main research question remains

to evaluate and test new mechatronic components in the

early development stages and prototyping of active or semi-

active suspension. For this reason, often a reduced structure

is used for identifying frequency-domain characteristics and

for mitigating effects of other existing sub-dynamics, process

noise or model uncertainties [14].

This paper aims to present the design, implementation, and
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experimental validation of a one degree-of-freedom (DOF)

frequency-domain experimential setup intended to perform

modal testing of mechatronic components, especially those to

be employed in suspension systems. The proposed experimen-

tal setup addresses necessity of reducing system complexity

for testing vertical dynamics of individual components of

interest of the suspension column, e.g. integration of functional

materials in suspension systems. Particular focus was given

to the flexibility and modularity of the setup, in order to

allow for reconfigurability and, this way, frequency response

and modal analysis of different specimens and mechatronic

subassemblies. The measurement and estimation of the fre-

quency response characteristics, see e.g. [15] for basics, of

the experimental setup self is of prior focus in this work.

The rest of the paper is organized as follows. A detailed

description of the experimental setup and its main components

are provided in Section II. Section III, as main part, discusses

the system dynamics along with experimental measurements

and estimation of the FRFs of interest. Frequency-domain

analysis of the experimental measurements conducted to evalu-

ate the performance and feasibility of reproducing the standard

road profiles are presented in Section IV. At the end, final

conclusions are provided in Section V.

II. SYSTEM DESIGN AND INSTRUMENTATION

The experimental setup, shown in Fig. 1, was designed as

1-DOF system, in first line, for testing components in vertical

dynamics configuration. The design focuses on frequency-

domain study of mechatronic parts and elements placed in

between the sprung/unsprung mass and controllable excitation.

The main requirements on the experimental setup are: having

similar dynamic behavior in terms of natural frequency of the

scaled down sprung mass; vertical guided movement of the

chassis mass with ideally low friction disturbance; capability

of applying realistic excitation, like those from the standard

road profile kinematic signals.

Fig. 1: Laboratory apparatus of the experimental setup and

powering, sensing, and control electronics.

The system main components are schematically presented

in Fig. 2, based on the designed CAD technical drawing of

the entire assembly. A moving carriage 2 , correspondent

Fig. 2: Schematic representation of the setup components.

to the unsprung mass of the vehicle, is excited from the

bottom side by a modal shaker 1 . The vertical motion of

the moving carriage 2 is supported by a linear four-row

circular-arc contact HIWIN guide-way 3 . This linear guide-

way was chosen so as to minimize disturbing friction of the

vertical guidance of the chassis mass. A compression spring

4 , representing the scaled stiffness k of a passive suspension,

is placed in between the force sensor 6 (HBM U10M-2.5kN),

which is fixed at the top beam of mechanical frame, and

the moving carriage. Optionally, additional masses 5 can be

stacked on top and clamped to the moving carriage in order

to adjust the unsprung mass m. Together with using different

compression springs (of different stiffness k) this allows to

adjust the natural frequency ω0 =
√
km−1 of the system.

The force excitation is given by an electromagnet-based

modal shaker (Brüel & Kjær type 4828) with a force rating

up to 1000 N suitable for impulse, sinusoidal, and random

signals with a wide frequency range (up to 5000 Hz) and a

peak-to-peak displacement up to 50.8 mm. This transducer is

driven by a dedicated field power supply and a power amplifier

that conditions the current and voltage for the modal exciter

according to the reference control signal. The power amplifier

allows for monitoring the modal exciter’s current and voltage.

A DC static centering unit provides the armature ”suspension”

and is responsible for the correct positioning of the shaker rod

relative to the exciter’s housing (”zero-positioning”).

The system’s modularity and configuration flexibility are

important characteristics that were taken into account during

the design process, in order to allow for testing of different

suspension components and mechatronic devices. The moving

carriage consists of two big steel blocks connected by two side

steel plates. This allows the ability to access and reconfigure

the sensors mounted on the moving carriage. The adapter
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couplings 8 placed on the bottom of the moving carriage and

modal shaker rod are interchangeable and allow for varying

size and shape specimens and components. Here it is worth

noting that inclusion of piezoelectric stacks into semi-active

suspension systems [16] is of particular interest in our recent

and future studies.
The mechanical frame 7 was built around the modal shaker

fixture using IPE steel beams. The single criteria for beam

dimensioning was requiring that the elastic bending in the

middle of the top beam is one order of magnitude below

the smallest displacement to be measured in the specimen at

maximum excitation force. That was verified through finite

element model (FEM) simulation. The overall beam size was

then additionally increased, in order to increase the overall

weight of assembly.
An optical laser sensor 9 (Micro-Epsilon optoNCDT 1420-

50) is placed on side of the structure frame to measure

the displacement of the moving carriage without contact.

A higher precision laser triangulation sensor 10 (Micro-

Epsilon optoNCDT 2300-2) is fixed within the moving car-

riage, in order to measure additionally the micro compressions,

correspondingly elongations, of the mechatronic component

under testing. Due to the small mangitude of compressions

measured, the mechanical rigidity of structural coupling parts

and proper locking of adjustment bolts are ensured to achieve

reproducibility of measurements.
The dSpace MicroLabBox (DS1202) is used to generate

the reference control input signal U , provided to the modal

shaker, and for data acquisition through the BNC analog input

ports, with all signals being sampled at 10 kHz. A dedicated

embedded circuit enables the laser sensors through the dSpace

MicroLabBox digital I/O ports.

III. DYNAMICS AND FRF RESPONSES

The experimental system dynamics are evaluated in fre-

quency domain, including: identifying dynamics response of

the system, i.e. the transfer functions of interest; designing the

appropriate excitation signals; measurement and estimation of

the system FRFs and identification of the remaining model

parameters, which are not available from data sheets and/or

CAD and FEM calculations.

A. System dynamics
Due to a broad frequency range of the shaker, one can

assume sufficiently low time constants of the electric and

electro-magnetic circuits, which can then be neglected when

comparing with time constants of the mechanical components

in place. Considering the excitation force signal FA of the

modal shaker, one can assume that this is linearly proportional

to the current I of the shaker coils, so that

FA ∝ kaI, (1)

where ka is the current-to-force constant. The moving carriage

can be defined as the second-order system, with the corre-

sponding transfer function

X(s)

I(s)
=

ka
ms2 + bs+ k

, (2)

where X is the measurable position of the moving mass m, k
is the stiffness of the compression spring, and b is the overall

viscous damping. By convention, s is the Laplace variable,

while for referring to the measured frequency response func-

tions the jω argument is used. Here ω is the angular frequency,

and j is the imaginary part of complex numbers.

Another transfer function of interest is the relationship

between the modal shaker current I , i.e. proportional to the

excitation force, and the measured force F which is propagated

up through the overall mechanical structure. Recall that the

force sensor for F is fixed at the top of the structure frame,

cf. Fig. 2. Due to parallel spring-damper configuration of the

second-order dynamics (2), the Kelvin-Voigt, see e.g. [17],

force transducer is an inherent assumption for capturing F in

response to FA-propagation through the structure. This results

in the transfer function

F (s)

I(s)
= ka · (bs+ k)

ms2 + bs+ k
· 1

τs+ 1
, (3)

while an additional non-modeled first-order subdynamics, with

time constant τ , is added for keeping the phase shift constraints

out from the measured characteristics. Since the moving

carriage mass m and the spring stiffness k are known, from

CAD/FEM design, only the ka, b and τ parameters need to

be identified from the measured FRFs.

B. System excitation

An often used excitation signal for identifying frequency

response of the system is a swept-sine test signal, also referred

to as a chirp signal, see e.g. [15]. The signal constitutes a sine

wave where the frequency is linearly increasing as function of

time. This leads to the modal shaker command input

U = A sin(2πf(t)t), (4)

where A is the chirp gain, and the time-varying frequency is

given by

f(t) = f0 +
f1 − f0
2T

t. (5)

The used chirp signal was set for the frequency range f0 = 0.1
Hz, f1 = 100 Hz and the runtime T = 300 s. This way, the

system is smoothly excited over the whole frequency range,

and the magnitude and phase are afterwards computed as the

ratio of the output Fourier transformation to the input Fourier

transformation of the measured time series. For the sake

of better visualization, a high-dimension Hamming window

is also applied to the Fourier transformed data. It is worth

noting two main limitations of the chirp signal in system

identification: the transient dynamics are (partially) present

in the FRFs, due to continuous increase of the excitation

frequency; and the number of excitation cycles for lower

frequencies is lower than for the higher frequencies.

Alternatively, the frequency response measurements with

periodic test signals allow for determining the relevant fre-

quency range by the discrete (sampled) points in the frequency

spectrum [15]. Typically sinusoidal signals at fixed frequen-

cies are used, with the experiment being repeated for each
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frequency ωv of interest. A time series consisting of the set

of sinusoidal waves of different frequencies applied one after

another is commonly used in practice for system identifica-

tion. Then, considering G(jω) = Y (jω)/Z(jω) for each ωv

realization of a non-parametric model from input Z(jω) to

output Y (jω), the amplitude and phase are determined by

|G(jωv)| = y0(ωv)

z0(ωv)
,

∠G(jωv) = −tφωv.

(6)

Here tφ denotes the time duration of the phase lag between the

output y(t) and input z(t) measurement. Correspondingly z0
and y0 are the bias-free maxima (i.e. amplitude) of the input

steady-state output oscillations.

C. Frequency response function measurement and estimation

First, the FRF measurements were accomplished by exciting

the system with the chirp signal (4)-(5).

Then, the discrete point measurement over the frequency

spectrum was also implemented by sequentially exciting the

system with a sinusoidal input of different frequencies, within

the range of interest. These FRFs were computed for total of

180 frequency points, equidistantly distributed on the logarith-

mic scale within the [0.2, 100] Hz frequency range. A total of

10 periods for each frequency wv were used, where the first 3

are skipped as transient periods and the remaining 7 are used

as estimation periods.

From the measured signals it is also possible to verify some

characteristics of the system. Those are the amplification gain

factor of the low-level controlled shaker |V (jω)/U(jω)| =
29.26 dB, where V is the shaker control voltage, and the

stiffness of the spring, which is resulting from the following

amplitude response |F (j · ωmin)/X(j · ωmin)| ≈ 17.34 kN/m.

The obtained from the measured data frequency response

functions for input and output pairs of interested are shown in

Figs. 3-6, that for both the chirp and set of sinusoid signals.

The frequency response of the identified transfer functions

(2) and (3), with the determined parameters listed in Table

I, is shown over the measurements. For parameter estimation,

the computed discrete points in the frequency spectrum for

magnitude and phase are used based on the set of sinusoids.

It is visible that the set of sinusoid identification signals

provides a better (i.e. more accurate) dynamics signature at

lower frequencies, while the oscillation from transients in the

chirp are apparent. Note that sinusoid identification implies,

however, higher experimental costs (time) when compared

to the chirp signal. The peak amplitude is observed in the

frequency responses X(jω)/I(jω) and F (jω)/I(jω) (Fig. 3

and Fig. 4) for the frequency f ≈ 4.4 Hz, disclosing a resonant

behavior which is consistent with the natural frequency of the

mechanical system ω0. From (2) and (3) one can conclude

that beyond the frequency ω0, there is a decreasing slope by

−40dB per decade in |X(jω)/I(jω)| and |F (jω)/I(jω)|, due

to the relative degree two of the system in both cases. This is

also visible in −180° asymptote of the phase response. The

well visible but not modeled higher-order, correspondingly -

frequency, dynamics is up from about 30 Hz.

TABLE I: Computed and identified model parameters

Parameter Computed Identified Units
value value

m Moving carriage mass 22.2426 - kg
b Damping coefficient - 134.86 Ns/m
k Spring stiffness 17000 - N/m
ka Current-to-force gain - 24.1744 F/A
τ Time constant - 0.01 s
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Fig. 3: Measured frequency response function: X(jω)/I(jω).
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Fig. 4: Measured frequency response function: F (jω)/I(jω).

The F (jω)/U(jω) response shown in Fig. 5 discloses the

capability of propagated force excitation for the given con-

figuration ω0. The continuously decreasing (with increasing

frequency) gain factor should be, however, taken into account

when designing the excitation profiles for application-specific

command U(jω). To show flexibility and adaptability of
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Fig. 5: Measured frequency response function: F (jω)/U(jω).
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Fig. 6: Measured frequency response function: I(jω)/U(jω).

the system, Fig. 6 demonstrates the measured I(jω)/U(jω)
response to the chirp excitation signals for two different

mass/spring configurations: the nominal one with parameters

shown in Table I and natural frequency ω0 = 4.4 Hz; and the

adjusted configuration with higher spring stiffness resulting in

natural frequency ω0 = 5.4 Hz. One can see an apparent shift

of the anti-resonance peak, corresponding to ω0, marked for

both configuration. From this FRF, it is visible that the internal

controller of the modal shaker is partially compensating for the

resonant behavior of mechanical system with bounded motion.

Focusing on dynamics of the moving carriage, the mass

acceleration ẍ(t) can be assessed by double discrete derivative

of the relative displacement. A low-pass filter (LPF)

H(s) =
ωc

s+ ωc
, (7)

with cut-off frequency ωc = 2π · 200 rad/sec was, however,

additionally used to smooth the obtained signal. The same

LPF is also applied to the current signal i(t) to compensate

for the introduced phase lag. The frequency response for

Ẍ(jω)/I(jω) is shown in Fig. 7, together with the corre-

sponding transfer function. This allows for further analysis of

suspension components since, in a sprung-unsprung dual mass

configuration, the vertical acceleration of the sprung mass is

usually used to evaluate the ride comfort performance.
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Fig. 7: Measured frequency response function: Ẍ(jω)/I(jω).

IV. STANDARD ROAD PROFILE EXCITATION

The proposed experimental setup has in focus the sus-

pension system applications, among others, envisaging future

studies which involve modal testing of prototyped mecha-

tronic components, mainly for system identification, but also

energy harvesting and suspension control purposes. As seen

in previous works, the frequency range of interest in vehicle

suspensions is mostly within 0.1-40 Hz, cf. with [6], [9], [18].

From more realistic applications’ point-of-view, it is of

interest to see the response of the experimental setup to

standardized road profiles. Nowadays, synthetic longitudinal

road profiles based on ISO 8608 road classification are often

used for simulation purposes [19]. This road excitation can be

characterized as a specifically filtered Gaussian band-limited

white-noise. A standard road excitation, according to ISO 8608

classification, can be then generated as a white-noise signal

processed through the filter

Ge(s) =

√
2πrν

s+ ωr
. (8)

Here r is the road roughness coefficient, ν is the longitudinal

velocity of the vehicle, and ωr is the road cutoff frequency.

For a detailed description of generating standard road profiles

we refer to previous works [16], [18]. The resulted road

displacement W , out from the filtering (8), is then applied

to the reference command U , as a force transmitted by the

vehicle tire, resulting in

U(s)

W (s)
= k−1

a (bts+ kt). (9)
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The tire damping and elastic coefficients, bt and kt respec-

tively, are assumed as in [16].

To evaluate the capability of exciting the system by the

typically good-paved surfaces (Class A, typically motorway)

and rather lower quality paved surfaces (Classes B and C for

local highways and city roads), correspondent control input

signals U for the modal shaker were generated. The vehicle

is considered to be riding at a constant longitudinal velocity

of ν = 100 km/h for the class A, ν = 70 km/h for the class

B and ν = 50 km/h for the class C, reference velocity values

for each road according to [19].

Measured frequency response function F (jω)/I(jω) for

standard road excitation profiles is shown in Fig. 8. One can

observe an increase of the magnitude as the rough roughness

r increases, consistent with higher kinematic excitation, and

correspondingly excitation forces, due to lower road quality.

Strong attenuation of the resonance peaks, otherwise observed

before in Fig. 4, is due to lower excitation magnitudes

(bringing out additional nonlinearities and couplings), power

dispersion over the whole frequency range (white-noise type

power source), and additional pre-filtering of the input signal,

both from the road cutoff frequency and the tire damping term.
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Fig. 8: Measured frequency response function F (jω)/I(jω)
for road excitations ISO 8608 class A, B and C.

V. CONCLUSIONS

An experimental setup for frequency-domain analysis of

different mechatronic and, especially, suspension system com-

ponents is reported. The initially assumed system dynamics

were experimentally measured, FRF computed and analyzed.

The fitted parametric transfer functions coincide accurately, to

the large extent, with the experimentally measured responses

that argues for validity of results, system specification, and

initial assumptions. Additional process noise and unmodeled

higher-order dynamics are also clearly visible in the measured

FRFs for frequencies higher than 30 Hz.

The capability of controlling and reproducing excitation

signals over the desired frequency range for a particular

application of interest, i.e. vehicle suspension systems and

their mechatronic elements, shows the feasibility of using the

designed system for frequency-domain identification, analysis

and dynamics evaluation, and further use for testing and vali-

dation of models and control prototypes. Here, especially, the

reconfigurability and instrumentation of the moving carriage

which can be excited by real (measured) road profiles disclose

potential for investigations of passive, active and semi-active

suspension components, including those with integration of

functional materials and with further goal of an additional

energy harvesting.
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