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Section 1

Preliminaries
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Preliminaries

The simplest example

σ̇ = α+u = α−sign(σ), σ(0) = 1

with α ∈ (−1, 1).

σ > 0⇒ σ̇ =< 0

σ < 0⇒ σ̇ => 0

and σ(t) ≡ 0,∀t ≥ T .

Remark

0 = α− sign(0)?

The right-hand side is
discontinuous.

After arriving to σ = 0,
sliding along σ ≡ 0.

Finite-time convergence.

Differential inclusion.

σ̇ ∈ [−α, α]− sign(σ)
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Preliminaries

Mechanical system
A generic mechanic system ẋ1 = x2

ẋ2 = u + f (t, x)
σ = x2, |f (t, x)| < 1

with σ as output and select

u = −sign(σ)= dry friction

x1 : position.
x2 : velocity.
σ : measurement
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Preliminaries

Summary: Late 50 th

Mathematics

Theory of the differential equations with the discontinuous right hand site w.r.t. the
state variables was needed:

Specially for engineers: definition of solution on the discontinuity surface

Engineering

Certainly we stopped, but where?

No control over x1 (position)

Can we manipulate both x1 and x2 at the same time?

High frequency discontinuous (switching) control

Chattering
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Preliminaries

Filippov’s solution of an ODE with discontin-
uous right-hand side(1960)

ẋ = f (x), x(0) = x0

with ‖f (x)‖ ≤ L, ∀x ∈ D.

Figure: Prof. Filippov

x(t) is a solution of the initial value problem on [0,T ] if it is absolutely
continuous on [0,T ], x(0) = x0 and

ẋ(t) ∈ K [f ](x(t)) a. e. on [0,T ]

where
K [f ](x) :=

⋂
δ>0

⋂
µ(N)=0

co{ f (B(x , δ)\N)}
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Preliminaries

Filippov’s definition of solution, 1960

ẋ = f (x),

A sliding motion exists if the
projections of the vectors
f + = f (x)+, f − = f (x)− on grad(s)
are of opposite signs

The motion on the surface is
ẋ = f 0 := µf + + (1− µ)f − with µ
computed to satisfy

〈grad(s), f 0〉 = 0

The surface characterizes the
equivalent dynamics f0.
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Section 2

Stage 1: First Order Sliding Modes
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Stage 1: First Order Sliding Modes

Two Main Concepts of First Order Sliding
Mode Control

Figure: Prof. Utkin and Prof. Emel’yanov. IFAC Sensitivity Conference, Dubronovik 1964
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Stage 1: First Order Sliding Modes

Equivalent control

ẋ = f (x , t) + B(x , t)u

with u discontinuous as previously defined.
To find the value of control u allowing to slide on the given the surface s(x) = 0
and given dynamics on s:

ṡ = Gf + GBu = 0, G = grad s

If GB is not singular ∀(x , t) than an ”equivalent control”

ueq(x , t) := −[G (x)B(x , t)]−1G (x)f (x , t)

The sliding mode dynamics

ẋ = f − B(GB)−1Gf
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Stage 1: First Order Sliding Modes

Sliding surface

Desired error dynamics

σ := x2 + cx1 = 0 =⇒ x1(t) = x10e
−ct , x2(t) = cx20e

−ct

then:

The manifold σ = 0 is known as the
sliding surface

The surface characterizes the desired
dynamics

The control objective of sliding mode
control is to reach σ = 0 in finite time

Once on the surface, the control must
keep the trajectories “sliding” on the
surface: sliding mode
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Stage 1: First Order Sliding Modes

Problem Formulation

{
ẋ1 = x2
ẋ2 = u + f (t, x)

Problem formulation

Design u(t) such that lim
t→∞

x1(t) = lim
t→∞

x2(t) = 0 and ∃T > 0 such that

σ(t) = 0,∀t > T ,

considering bounded uncertainty, i.e.

|f (x , t)| ≤ L

that represents modeling imperfections and external perturbations.
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Stage 1: First Order Sliding Modes

Invariance of sliding-modes [B. Drazenovic]

B. Drazenovic. “The invariance conditions in variable structure systems”, Automatica, v.5, No.3,

Pergamon Press, 1969.

ẋ = f (x , t) + B(x , t)u + h(t, x)

with h(t, x) as uncertainty. A sliding-mode is
insensitive against uncertainty satisfying

h(t, x) ∈ span{B(x , t)}

(matched perturbations). Under this condition
∃λ ∈ Rm|h = Bλ and then

ẋ = f (x , t) + B(x , t)[u + λ]
Figure: Prof.
Drazenovic
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Stage 1: First Order Sliding Modes

Design in the regular form [Louk’yanov,
1981]

A. Loukyanov, V. Utkin. “Reducing dynamic systems to the regular form”. Automation and Remote Control, No 3, pp, 5-13., 1981.

Figure: Prof. Louk’yanov
15 / 79

5 Stages of SM

N



Preliminaries Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Conclusions

Stage 1: First Order Sliding Modes

Design in the regular form [Louk’yanov,
1981]

˙̄x1 = f̄1(x̄1, x̄2)

˙̄x2 = f̄2(x̄1, x̄2) + B̄(x̄1, x̄2)[u + λ]

Fictitious control: x̄2 = −s0(x̄1).

Sliding surface: σ(x̄1, x̄2) = x̄2 + s0(x̄1) = 0

Equations on sliding
˙̄x1 = f̄1 (x̄1,−s0(x̄1))

that does not depend on f2(·) nor B2(·).
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Stage 1: First Order Sliding Modes

Example: First Order Sliding Mode

ẋ1 = x2

ẋ2 = u + f

x1, x2 are the states

u is the control

f = 2 + 4sin(t/2) + 0.6sin(10t).

σ = x1 + x2

−4 −2 0 2
−10

−5

0

5
Phase portait of x1 and x2

x1
x
2

0 5 10
−8

−6

−4

−2

0

2
Convergence of states

t

x

0 2 4 6 8 10
−20

−10

0

10

20
Control Input and Negative of the Perturbation

t

u
,
−
f

17 / 79
5 Stages of SM

N



Preliminaries Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Conclusions

Stage 1: First Order Sliding Modes

First Order Sliding Mode: Precision
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Stage 1: First Order Sliding Modes

Sliding Mode Differentiator

Signal to differentiate: f (t)

Assume |ḟ (t)| ≤ M

Find differentiator
y = f (t), ẏ = ḟ ,

Sliding Mode Differentiator

ẋ = k sign(e), e = y − x

ė = ḟ − k sign(e) =>

in finite time ė = 0 => ḟ = filtered k sign(e)
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Stage 1: First Order Sliding Modes

SUMMARY: First order sliding modes

Advantages

Theoretically exact compensation of matched uncertainties it supposed that the
states are available

Reduces SMC design to control selection for two reduced order systems

Saturated control law

Ensures finite-time convergence to the sliding surface

Disadvantages

Chattering

For SISO systems the dimension of sliding dynamics is reduced just for 1

State variables converge asymptotically

High order derivatives are needed to design sliding surfaces The theory was not
complete:theoretically exact compensation needs theoretically exact differentiation
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Section 3

Stage 2: Second Order Sliding Modes
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Stage 2: Second Order Sliding Modes

Chattering as the relative degree problem

Figure: Prof. Levant and Prof. Fridman
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Stage 2: Second Order Sliding Modes

Second Order Sliding Modes


ẋ1 = x2

ẋ2 = u + f (x , t)

σ = x1

f (x , t) unknown uncertainties/perturbations.

All the partial derivatives of f (x , t) are bounded on
compacts

Figure: Prof.
Emelyanov,Prof. Korovin
and Prof. Levantovsky

Main Objective

To design a control u such that the origin of system is finite-time stable, in
spite of the uncertainties/perturbations f (x , t), with |f (x , t)| < f + for all t, x
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Stage 2: Second Order Sliding Modes

Twisting algorithm

u = −a sign(x2)− b sign(x1), b > a + f +, a > f +.

Known bounds f +

a and b chosen appropriately
(Emelyanov et al. 86),

Ensures finite-time exact convergence
for both x1 and x2
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Stage 2: Second Order Sliding Modes

Twisting Algorithm

ẋ1 = x2

ẋ2 = u + f

x1, x2 are the states

u is the control

f = 2 + 4sin(t/2) + 0.6sin(10t).
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Stage 2: Second Order Sliding Modes

Comparison First Stage vs Second
Stage:Precision
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Stage 2: Second Order Sliding Modes

Anti-chattering Strategy

Ẋ = F (t,X ) + G (t,X )u,X ∈ Rn, u ∈ R, |F | < F+,

The switching variable σ(X ) : σ̇ = f (σ, t) + g(σ, t)u.

Anti-chattering strategy:

Add an Integrator in control input:

If u̇ = v = −a sign(σ̇(t))− b sign(σ(t)), so u is a Lipschitz continuous control
signal ensuring finite-time convergence to σ = 0

Criticism(1987) If it is possible to measure σ̇ = f (t, σ) + g(t, σ)u,
then the uncertainty f (t, σ) = σ̇ − g(t, σ)u is also known and can be
compensated without any discontinuous control!

Counter-argument

If g is uncertain so σ̈ depends on u through uncertainty! The anti-chattering
strategy is reasonable for the case of uncertain control gains. 27 / 79
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Stage 2: Second Order Sliding Modes

Discussion about SOSM

Advantages of SOSM

1 Allows to compensate bounded matched uncertainties for the systems with
relative degree two with discontinuous control signal

2 Allows to compensate Lipschitz matched uncertainties with continuous control
signal using the first derivative of sliding inputs

3 Ensures quadratic precision of convergence with respect to the sliding output

4 For one degree of freedom mechanical systems: the sliding surface design is no
longer needed.

5 For systems with relative degree r : the order of the sliding dynamics is reduced
up to (r − 2). The design of the sliding surface of order (r − 2) is still necessary!
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OPEN PROBLEMS:EARLY 90th

To reduce the chattering substituting discontinuous control signal with
continuous one the derivative of the sliding input still needed!

The problem of exact finite-time stabilization and exact disturbance
compensation for SISO systems with arbitrary relative degree remains open.
More deep decomposition is still needed

Theoretically exact differentiators are needed to realize theoretically exact
compensation of the Lipschitz matched uncertainties
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Stage 2: Second Order Sliding Modes

First Stage vs Second Stage
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Figure: First Stage
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Figure: Second Stage
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Stage 2: Second Order Sliding Modes

Terminal Algorithm

ẋ1 = x2, ẋ2 = u(x),

u(x) = −α sign(s(x)),

s(x) = x2 + β
√
|x1| sign(x1).

Figure: Prof. Z. Man
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Stage 2: Second Order Sliding Modes

Relative Degree of Terminal Sliding Variable

Time derivative of the switching surface

ṡ(x) = ẋ2 + β
x2

2
√
|x1|

= −α sign(s(x)) + β
x2

2
√
|x1|

.

s(x) is singular for x1 = 0, and the relative degree of the switching surface does
not exist

On x2 = −β
√
|x1| sign(x1)

ṡ = −α sign(s(x))− β2

2
sign(x1).

Two types of behavior for the solution of the system are possible
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Stage 2: Second Order Sliding Modes

Terminal mode:

β2 < 2α,

Trajectories of the system reach the
surface s(x) = 0 and remain there.

Twisting mode

β2 > 2α

Trajectories do not slide on the surface
s(x) = 0
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Section 4

Stage 3: Super-Twisting Algorithm
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Stage 3: Super-Twisting Algorithm

The Super–Twisting Algorithm (STA)

Emalyanov, Korovin, Levantovsky, 1990, Levantovsky 1993

ẋ = f (t) + g(t)u,

u = −k1|x |
1
2 sign(x) + v ,

Integral extension

v̇ = −k2 sign(x),

f (x(t), t) is Lipschitz disturbance

Continuous control signal

Exact finite time convergence to
x(t) = ẋ(t) = 0, ∀t ≥ T

The derivative of x is not used!!!

If x is measured, the STA is an
output-feedback controller
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Stage 3: Super-Twisting Algorithm

Example Super-Twisting Algorithm

ẋ1 = x2

ẋ2 = u + f

x1, x2 are the states

u is the control

f = 2 + 4sin(t/2) + 0.6sin(10t).

σ = x1 + x2
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Stage 3: Super-Twisting Algorithm

Second Stage vs Third Stage
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Figure: First Stage
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Figure: Second Stage
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Figure: Third Stage
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Stage 3: Super-Twisting Algorithm

Comparison Second Stage to Third
Stage:Precision
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Stage 3: Super-Twisting Algorithm

Robust Exact Differentiator, Levant(1998)

Signal to differentiate: f (t)

Assume |f̈ (t)| ≤ L

Find an observer for
ẋ1 = x2, ẋ2 = f̈ , y = x1,

f̈ (t) bounded perturbation.

STA observer
˙̂x1 = k1|y − x̂1|

1
2 sign(y − x̂1) + x̂2,

˙̂x2 = k2 sign(y − x̂1), k2 > L

Convergence of STA assures:(f − x̂1) = (ḟ − x̂2) = 0 after finite time without
filtration!
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Stage 3: Super-Twisting Algorithm

SUMMARY

Advantages

1 Continuous control signal compensating Lipschitz uncertainties

2 Chattering attenuation but not its complete removal! (Boiko, Fridman 2005)

3 Differentiator obtained using the STA:

Finite-time exact estimation of derivatives in the absence of both noise and
sampling;
Best possible asymptotic approximation in the sense of Kolmogorov 62.
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Stage 3: Super-Twisting Algorithm

Open problems: End of 20th century

Open problems: End of 20th century

1 Relative degree r ≥ 2: Need sliding surface. Consequently the states converge
to the origin asymptotically. Deeper decomposition is needed!

2 STA based differentiator for the sliding surface design is not enough: he can
not provide the best possible precision for highest derivatives

3 STA signal can grow together with perturbation! Saturation is needed

4 Direct application of STA together with the first order differentiator for control
of mechanical system can not be done because it is necessary to form sliding
surface with Lipschitz derivatives
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Section 5

Stage 4:Arbitrary Order Sliding Mode
Controllers
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Stage 4:Arbitrary Order Sliding Mode Controllers

Arbitrary Order Sliding Mode Controllers

Ẋ = F (t,X ) + G (t,X )u,X ∈ Rn, u ∈ R
σ = σ(X , t),∈ R.

σ has a fixed and known relative degree r .

Control problem is transformed into the finite-time stabilization of an uncertain
differential equation

σ(r) = f (t,X ) + g(t,X )u, (1)

and corresponding differential inclusion

σ(r) ∈ [−C ,C ] + [Km,KM ]u, (2)

where C ,Km and KM are known constants.
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Stage 4:Arbitrary Order Sliding Mode Controllers

Nested arbitrary order sliding-mode con-
trollers

2001: Nested arbitrary order SM
controller

Solve the finite-time exact stabilization
problem for an output with an arbitrary
relative degree.

Bounded Lebesgue measurable
uncertainties.

”Nested” higher order
sliding-mode(HOSM) controllers are
constructed using a recursion

Figure: Prof. Levantovsky
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Stage 4:Arbitrary Order Sliding Mode Controllers

Nested Third Order Singular Terminal Algo-
rithm

Third Order

u = −α sign
(
σ̈ + 2(|σ̇|3 + |σ|2)

1
6×

sign(σ̇ + |σ|
2
3 sign(σ))

)
Figure: 3rd Order Nested SM

Fourth Order

u = −α sign
(...
σ + 3(σ̈6 + σ̇4 + σ3)

1
12×

sign
(
σ̈ + (σ̇4 + |σ|3)

1
6 sign(σ̇ + 0.5|σ|

3
4 sign(σ))

))
Finite-time stabilization of σ = 0 and its successive derivatives up to r − 1.
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Stage 4:Arbitrary Order Sliding Mode Controllers

HOSM Differentiator

The Nested Controller needs the output and its successive derivatives

Instrument: HOSM arbitrary order differentiator

Let σ(t) signal to be differentiated k − 1 times

Assume that |σ(k)| ≤ L.

3-th order HOSM differentiator

ż0 = v0 = −3L
1
4 |z0 − σ|

3
4 sign(z0 − σ) + z1,

ż1 = v1 = −2L
1
3 |z1 − v0|

2
3 sign(z1 − v0) + z2,

ż2 = v2 = −1.5L
1
2 |z2 − v1|

1
2 sign(z2 − v1) + z3

ż3 = −1.1L sign(z3 − v2)

(3)

zi true derivative σ(i)(t).
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Stage 4:Arbitrary Order Sliding Mode Controllers

Black Box Control Concept for HOSM

Figure: Black Box Control Concept for HOSM
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Stage 4:Arbitrary Order Sliding Mode Controllers

Advantages of nested HOSM for SISO sys-
tems with relative degree r

Theoretically exact disturbance compensation basing on output information only

Full dynamical collapse: ensures σ = σ̇ = σ̈ = · · · = σ(r−1) = 0 in finite-time

Ensures the r -th order precision for the sliding output with respect to the
discretization step and fast parasitic dynamics

The sliding surface design is no longer needed
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Open problems: After 2005

For SISO systems with relative degree r still produces a discontinuous control
signal

Anti-chattering strategy: the information about σ(r) containing perturbations is
needed
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Stage 4:Arbitrary Order Sliding Mode Controllers

Example Nested 3rd Order Singular Terminal
Controller with anti-chattering strategy

ẋ1 = x2

ẋ2 = u + f

u̇ = u2

x1, x2 are the states

u2 is the control

f = 2 + 4sin(t/2) + 0.6sin(10t).

σ = x1
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Stage 4:Arbitrary Order Sliding Mode Controllers

First Stage to Fourth Stage
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Figure: First Stage
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Figure: Third Stage
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Figure: Second Stage
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Figure: Fourth Stage
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Stage 4:Arbitrary Order Sliding Mode Controllers

Comparison Third Stage to Fourth
Stage:Precision
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Section 6

Stage 5: Continuous Arbitrary Order
Sliding-Mode Controllers
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Continuous Arbitrary Order Sliding-Mode
Controllers

Figure: UNAM: J. Moreno IIT: B. Bandyopadhyay, S. Kamal, A. Chalanga, Shtessel&
Edwards
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Properties of CHOSM

For the systems with relative degree r

Continuous control signal

Finite-time convergence to the (r + 1)-th order sliding-mode set

Derivatives of the output up to the (r − 1) order

55 / 79
5 Stages of SM

N



Preliminaries Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Conclusions

Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Continuous arbitrary order sliding-mode con-
trollers

Discontinuous–Integral Algorithm(D-I), (Zamora, Moreno,2013)

Two versions of the Continuous Terminal Sliding Mode Algorithm(CTSMA)
(Mexico- India 2014-16)

(a) Continuous Singular Terminal Sliding Mode Algorithm (CSTSMA);
(b) Continuous Nonsingular Terminal Sliding Mode Algorithm

(CNTSMA);.

Continuous Twisting Algorithm(CTA)( Moreno, Fridman et al 2015-18)

Arbitrary Order Continuous Sliding Mode Controller Laghrouche et al(2017)
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Discontinuous - Integral(D-I) Algorithm


ẋ1 = x2

ẋ2 = u + f (t)

σ = x1

u =− k1bx1e1/3 − k2bx2e1/2 −
∫ t

0

(k3bx1(τ)e0)dτ, (4)

where k1, k2, k3 are appropriate positive gains.
New Notation: bzep = |z |psgn(z)
NONLINEAR PID!
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Continuous Twisting Algorithm (CTA)


ẋ1 = x2

ẋ2 = u + f (t)

σ = x1

u =− k1bx1e1/3 − k2bx2e1/2 −
∫ t

0

(k3bx1(τ)e0 + k4bx2(τ)e0)dτ, (5)

where k1, k2, k3, k4 are appropriate positive gains.
New Notation: bzep = |z |psgn(z)
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Continuous Twisting Algorithm (CTA)

Closed Loop System 
ẋ1 = x2

ẋ2 = −k1bx1e1/3 − k2bx2e1/2 + x3

ẋ3 = −k3bx1e0 − k3bx2e0 + ρ,

(6)

ρ = ∂f
∂x

ẋ + ∂f
∂t

, and |ρ| ≤ ∆.

Twisting structure to reject perturbations.
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Simulation: CTA
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Figure: Numerical results for a double integrator with perturbation
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Discussion about the CTA

Advantages

Algorithms homogeneous of degree δf = −1, with weights ρ = 3, 2, 1.

The only information needed to mantain finite time convergence of all
three variables x1, x2 and x3 is the output (x1) and its derivative (x2)

Precision corresponds to a 3rd order sliding mode
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Continuous Singular Terminal Sliding Mode
Algorithm (CSTSMA)


ẋ1 = x2

ẋ2 = u + f (t)

σ = x1

u =− k1bφe1/2 − k3

∫ t

0

bφe0dτ, (7)

where φ =
(
x2 + k2bx1e2/3

)
, and k1, k2, k3 are appropriate positive gains.
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Continuous Singular Terminal Sliding Mode
Algorithm (CSTSMA)

Closed Loop System 
ẋ1 = x2

ẋ2 = −k1bφe1/2 + x3

ẋ3 = −k3bφe0 + ρ,

(8)

ρ = ∂f
∂x

ẋ + ∂f
∂t

, and |ρ| ≤ ∆.

Combination of the Super-Twisting algorithm with the Singular Terminal Sliding
mode.
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Continuous Nonsingular Terminal Sliding
Mode Algorithm (CNTSMA)


ẋ1 = x2

ẋ2 = u + f (t)

σ = x1

u =− k1bφNe1/3 − k3

∫ t

0

bφNe0dτ, (9)

where φN =
(
x1 + k2bx2e3/2

)
, and k1, k2, k3 are appropriate positive gains.
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Continuous Nonsingular Terminal Sliding
Mode Algorithm (CNTSMA)

Closed Loop System 
ẋ1 = x2

ẋ2 = −k1bφNe1/3 + x3

ẋ3 = −k3bφNe0 + ρ,

(10)

ρ = ∂f
∂x

ẋ + ∂f
∂t

and |ρ| ≤ ∆.

Combination of the Super-Twisting algorithm with the Nonsingular Terminal Sliding
Mode algorithm.
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Simulation:CSTSMA
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Figure: Convergence and precision of states with τ = 0.001 for 3-CSTSMA
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Continuous Singular Terminal Sliding Mode
Control(CSTSMC)

Twisting controller-like Behavior.
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Figure: Numerical example uncertain double integrator
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Continuous Nonsingular Terminal Sliding
Mode Control(CNTSMC)
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Figure: Numerical example uncertain triple integrator
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Sliding-Like Behavior of CNTSMC
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Figure: Phase portrait of Plant’s states x1 and x2, and locus of the switching curve
φ = φN = 0, showing a Sliding-Like behavior of the CNTSMC
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Twisting-Like Behavior of CNTSMC
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Figure: Phase portrait of Plant’s states x1 and x2, and locus of the switching curve
φ = φN = 0, showing a Twisting-Like behavior of the CNTSM controller.
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

All five Stages
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Figure: First Stage
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Figure: Fourth Stage
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Figure: Second Stage

Figure: Fifth
Stage:CSTSMC
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Figure: Third Stage

Figure: Fifth
Stage:CNTSMC
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Fourth Stage vs Fifth Stage:Precision

Same precision and smoothness of control without using σ̈
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Third Stage vs Fifth Stage:Precision
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Comparison 5 Stages

Algorithm Control Signal Information Stability Precision w.r.t. sampling
First SMC Discontinuous σ, σ̇ Asymptotic O(h)

2SMC Discontinuous σ, σ̇ Finite time 0(h2)
Super-twisting Continuous σ, σ̇ Asymptotic 0(h2)

3SMC + anti-chattering Continuous σ, σ̇, σ̈ Finite time 0(h3)
Continuous 2SMC Continuous σ, σ̇ Finite time 0(h3)
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Third Order CTA (Mendoza, Fridman,
Moreno,2017)

3-CTA

ẋ1 = x2 (11)

ẋ2 = x3 (12)

ẋ3 = −k1bx1e
1
4 − k2bx2e

1
3 − k3bx2e

1
2 + x4 (13)

ẋ4 = −k4bx1e0 − k5bx2e0 (14)

NONLINEAR PIDD!
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

3-CTA
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Figure: 3-CTA and states precision with τ = 0.001
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Stage 5: Continuous Arbitrary Order Sliding-Mode Controllers

Discussion about C2SM

C2SM

Homogeneous of degree δf = −1,
with weights ρ = 3, 2, 1.

The only information that needed to
mantain finite time convergence of
all three variables x1, x2 and x3 is the
output (x1) and its derivative (x2)

Can work for an uncertain system
with relative degree 2 with respect to
its output.

Can compensate bounded Lebesgue
measurable perturbations.

r-CHOSM

Homogeneous of degree δf = −1,
with weights ρ = r , r − 1, · · · , 2, 1.

Can be used for uncertain system
with relative degree r − 1 with
respect to output.

Insensible to perturbations whose
time derivative is bounded ! (can
not grow faster than a linear
function of time!)
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Section 7

Conclusions
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Conclusions

Conclusions

Last three decades new generations of controllers:

second order slding mode controllers(1985);
super-twisting controllers(1993);
arbitrary order sliding-mode controllers(2001,2005).

We have presented the next generation: two families of continuous nested
sliding-mode controllers, that can be used on Lipschitz systems with relative degree
r , providing a continuous control signal.

New controllers ensure a finite-time convergence of the sliding output to the
(r + 1)− th-order sliding set using information on the sliding output and its
derivatives up to the order (r − 1).
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