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Outline

- Feedback damping in second-order systems
- Motion control with optimal nonlinear damping

- Extension and experimental control example
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ﬁ UNIVERSITETET | AGDER Problem statement

= What is optimal for set-point control of a motion system?

. . cf. Adamy, J., 2022. Nonlinear Systems ,
y ‘ time C'Ptlmai and Controls. Springer u i

> Umax
k!

linear \( linear
/ B gt &

something in between?
> 7

f ~Umax

time optimal

In variety of motion systems, including electro-/magneto-/hydro-/mechanical actuators

——  Payload

BLDC motor \

77 -

N\

Direct coupling Ball screw

Linear controllers are always suboptimal
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1l UNIVERSITETET | AGDER Problem statement (cont.)

= Consider the problem of optimal damping in 2"9 order control
systems, with a potential field created by x,-output feedback

assumed class X, =X,
of the systems

time-optimal

X, =—kx, = D(")
T (+a_ . ,—a

max 2 max )

When assuming first a zero damping, 1.e. D=0,
the system becomes harmonic oscillator time-optima}/with velocity-bound

N\
Xy

time

D=0 could be a candidate but (!) requires: (1) ‘on-fly’ calculation of the reference bias
for keeping x, , + 0.5 (x, ¢ — X, ). (i1) exact stop at x; ¢ and no ‘post-regulation’
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1l UNIVERSITETET | AGDER Feedback with linear damping

» Standard state-feedback control (equivalent to PD feedback control)

Closed-loop control system in the state-space form

X, 0 1 ||x ; . :
L= = a(s)=s"+ds+k: characteristic polynomial
X, —k —d || x,

Rewriting the loop transfer function L(s) for the Root-locus with d-gain

g .
1+dL(s)=1+d d=0
() s’ +k ol <«
Analyzing the closed-loop dynamics for 1L
d €[0,...,0) (while k-gain is fixed) E +/ . dw
=0 ]
Optimal (i.e. critical) damping: d — o N Dopiml
s> +ds+k=(s+A4)> : double real pole 1
= k=2% d=2k Ll d=0
d < 2\/E : transient oscillations 5 2 1 ;
d > 2k : dominant pole is 'slowing down' ) 7 Re
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<1l| UNIVERSITETET | AGDER Feedback with linear damping (cont.)

» Closed-loop dynamics as an initial value problem
X+dx+k=0, x(0)=x, x(0)=0, with d =2k and X, =X, X, =X

General homogeneous solution (for double real poles)
x(t)=C e +C,te™ with A=k

. B o, . . . . 12 - i
Solving for 1nitial values (i.e. finding C, and C,) results in
kit . k't . :
x(t)=x,¢€ v (1 +Vk t), x(t) =—x, kte v ol "ideal" trajectory
—_— —\— - ue [a9 _a]
2 nearly ‘uniform growth’ at  exponential drop ~
10 the beginning (until max x,)  towards endpoint
(when — zero) 47
10°
. 0 ' :
“ potential for 0 01 . 02 0.3
o improvement in
] -
= 107 convergence Only exponential 10°
convergence rate:
k=10 convergence of 2
—— k=100 x(£)=>0 slows down 1071 |
10-4 3 ——k=1000 when the state
trajectory approaches
' OI " OI p OI A OI 5 zero equilibrium 1030t 1
X -0. -0. -0. -0. X
1.0 X, 1S 0 ! time 3 4
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Feedback control with optimal nonlinear damping

Introduced optimal nonlinear damping (OND) control

i = &a, E4; (xl,xz) e Rz\{X1:O|X2¢O}
5

o~ T
w =
J
1%

To = —kr1 — x%]a:ﬂ_lsign(xg),

s

Main difference, comparing to linear (PD)
feedback control, is the damping map D

0_
X» = —kxy — D
10° <=
— ~ - — D
= ~ !
[T B
S -~ _Dnl i L I
-~
-~ = 0 xl
1020 F N | Ruderman, 2021, Journal of Franklin Institute
-~
.Y W | 100 = - -
~ - O L k=100
R W I A N B k=150
ExiD) I \ k=200
~ S0F = = = k=200 (n.s.)
40 L ~ A
[0 1 1 1 1 S~
0 2 4 6 8 t(s) 10 $

OND-control in (4), (5) allows also for input
signal v(7) to be saturated, v € [-S,...+S]

0 0.1 0.2 0.3 04
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Stability properties of OND-control

OND-control is globally asymptotically stable, converging to origin

alongside attractor x; + vk = 0 For Lyapunov function candidate

l , 1 , . .
V=_x5+kxi = V=-x3]x |_lsign(.\'g) <0
2 2 -
Asymptotic stability proof is by invariance

! (LaSalle) principle, i.e. for {x, #0|x, =0}

Closed-loop passive if % > sign(x;) sign(x;)
1

= I1.

For attractor, consider steady-state of (4), (5):

0 1 T
Di= [—k —I-x‘zll-\‘ll_]] el

=  klxi|lx; = —|nlxn = k.\‘lz sign(xy) = —-\“22 sign(x2)

allowing only for real solutions of above, results in x» + vkx; = 0
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] UNIVERSITETET | AGDER Linearly- & nonlinearly-damped response

Nonlinear damping brings
x,-trajectory closer to an ‘ideal’
bang-bang-type response

—

__;I'.1||I

— -

0 0.2 0.4 0.6 0.8 t(s) 1

(a)

Na ' ' ' B
. . {

il "ideal' trajectory “—_—”r-
uela,—al -

/

0 0.2 0.4 0.6 0.8 t(s) !
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= Nonlinearly-damped shape is

independent of k, which only
scales/stretches x,-trajectory

(a)
ot o Se—
e
A5
7 ——lk=10
g — k=100
*J_'f AN ENEEEN h ] mﬂ
| T A 1 1
(i 04 (18 1.2
Lis)
(b)
H ——k=10
161+ ——k=100 |4
E I: A EEERERA k:lﬂm
Ee ::
8

10



] UNIVERSITETET | AGDER Energy analysis of feedback-damped system

= For total energy function (equivalent to Lyapunov function)

1 1 ' : :
E:5x§+5kx12 = E=xx,+kx,x, =x,( x, +kx))

dyn:r:ics : )Efz = —kxl - D()

o linear damping o nonlinear constant o proposed optimal
damping (Coulomb-type) nonlinear damping
D() =dx, D() =dsign(x,) D() =x; sign(x,) | x [
= E=-dx, = E=-d|x,| =>E=—|x,[|x["

= Considering the energy- and, correspondingly, power-balance yields

ESUPPIY T Edissipated + E conservatlve — O Supp ly power Of COIItI'Ol E kx
=1, %, through potential field ~swply — 1
' i kxx, —dx; =—
© hnear dampmg COl’ltI'OlZ 1772 2 conservative
—— ——
Esuppty independent of the control errors (i.e. set-point distance)
o nonlinear damping control: k% BES | _
ping | X1ty o conservative
' | x, |
Esupply ——

decreases for larger control errors (i.e. set-point distance)
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] UNIVERSITETET | AGDER Dissipation properties of OND-control

Energetic (corresp. Lyapunov-function) aspects of regularized OND-control
Ruderman, 2021, IFAC-PapersOnLine

Remark 5. When assuming a quadratic Lyapunov func-
tion candidate

(c)

1 €3 (12) )

1

V(z)=aTPo=ckel + =

( ) 2 1 2

which represents the total energy level (i.e. potential

energy plus kinetic energy) of the system (7), (8), its time

derivative results in

d V() |ea| €3

— VL) = — .

dt lex| + p

Thus, the rate at which the control system (7), (8) reduces

its energy is cubic in the error rate, ie. ~ |eg|?, and
hyperbolic in the error size, i.e. ~ |e1| ™!, cf. Figure 3.

(13)

Fig. 3. Energy reduction rate |V[ of the system (7), (8):
depending on e in (a), depending on €5 in (b), and as

o Regularization factor 0<u<<k overall error-states function according to (13) in (c).

prevents an infinite energy-rate
and, thus, ensures a finite control (a) ! - (b)
action when |e;|— 0 1

o Cubic dependency of energy-rate
from the error-rate enables the
control to react faster to the error
dynamics, like in case of non-
steady trajectory phases or
sudden external perturbations 0

IdV/dt |
I dV/dt |
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] UNIVERSITETET | AGDER Convergent dynamics of OND-control

= With introduced regularization factor
0<pu<k €1 = L1 —T €1 =€ = T9g—T

the error dynamics of OND-controlled system becomes
‘62' €9
e1] + p

= All previously shown OND-properties are preserved,
while preventing singularities when (e,,e,) € {¢, =0]e, # 0}

€1 = e, €2 = —ke—

L One is interested in stability of not a particular solution or invariant set, but stability properties
of all solutions and some limit solution X (¢), to which all other solutions will converge

O We focus on convergent dynamics by Demidovich*, while a lot of research was done in
association with incremental stability and contraction analysis (contraction theory)

Key dtifesandts: N * Paviov et al., 2004, Systems & Control Letters

» Incremental stability does not imply the boundedness of
solutions in forward time and the existence of a well-defined

bounded steady-state solution & cf. e.g. Riiffer, Van De Wouw, Mueller,
» Convergence does not imply decay of the ‘distance’ between 2013, Systems & Control Letters

any two solutions uniform in the initial distance
On compact sets: Convergence < Incremental Stability
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<1l| UNIVERSITETET | AGDER Preliminaries of convergent dynamics

Notation of convergent system = H=zty 1)

Definition 1. The system (1) is said to be convergent if
for all initial conditions t5 € R, x5 € R™ there exists a
solution Z(t) = x(t, to, Zo) which satisfies:

(1) x(t) 1s well-defined and bounded for all t € (—oc, 00);
(11) z(t) i1s globally asymptotically stable. Convergent systems
according to Demidovich [1967]

Such solution z(t) is called a limit solution, to which
all other solutions of the system (1) converge as t —
0o. In other words, all solutions of a convergent system
'forget’ their mitial conditions after some transient time,
which depends on exogenous values like the reference or
disturbance, and thus converge asymptotically to z(¢).

Sufficient condition for system to be convergent

Theorem 1. Consider the system (1). Suppose, for some
positive definite matrix P = PT > 0 the matrix
1 of of T ‘
T, B 1= —(P%(.L,t) + [%(i,t)] P) @

2
More details on Demidovich’s

is negative definite uniformly in (z,f) € R™ x R and derinit | fofh
e y efinitions and proof of the

|f(q,t)| < const < +oo for all t € R. Then the system Theorem 1 are in Paviov,

(1) is convergent. Pogromsky, et al. [2004]
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Convergent dynamics of OND-control

For output tracking of the reference trajectory r(t) € C!,
we Introduce the error state e; = x; —r. Its time derivative
1S e2 = x2 — 7, respectively. Note that for an output
tracking of C'-trajectories, one can assume #(¢) = 0 for t >
7, while ¢ < 7 characterizes certain transient phase where
r # const. In the sense of a motion control, for instance,

the time ¢ < 7 will correspond to the transient phases of

a system acceleration or deceleration when moving. If a
reference trajectory r(f) contains multiple, but finite in
time, transient phases with 7(f) # 0, they will appear
as temporary perturbations upon which the convergent
dynamics of the control error, i.e. ||e1, e2|| — 0, must be
guaranteed for £ > 7.

Note that the introduced here regularization term 0 <
i < k does not act as an additional design parameter,
vet it prevents singularity in solutions of the system (4),
(5), cf. Sectlon 2.2. Evaluating the Jacobian of f(z,t) with
x = [eq, e2]T, cf. (7), (8) and (1), one obtains

of _
Or
0 1

(9)

—k + |ea| easign(er)/(|e1] + ,u) —2lea|/(le1] + p)

Ruderman, 2021, IFAC-PapersOnLine

OND-control error dynamics becomes

él = €9, (7)
toier ®)

Then, suggesting the positive definite matrix

1 [kO
P-3169]. (10)

one can show that the matrix J(z,t), which is the solution
of (2), is negative definite and, correspondingly, the The-
orem 1 holds. For proving it, we substitute (9) and (10)
mto (2) and evaluate the matrix definiteness as

3 lea| €2 (ler]| + 2
o B B — le2| €3 (lex| +2¢)

J SO V.I‘#O- (11)
4 (e +p sign(Cl))Q

Definiteness (not only semi-) of (11) implies; since substituting ¢5 = 0 into (8) = ¢5 = —key

= the system (7),(8) is uniformly convergent, and [e1.¢5|(t) = 0 = T is unique limit solution
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ﬁ UNIVERSITETETIAGDER  Numerical example of convergent OND-control system

Output trajectories for different initial values

a. T T T I T T T T I
( ) xnzi(}.S.SOjl . (b) .\U—_-c().S.SO)
= x,=(0.1.20) " x=(0.120)
, 40 =
xﬂza 1.0) xD_c 1.0)
1s | x,=(1.5.-30)| x=(1.5.-30)
|1 .'(0:1'0. 3.-20) X = 0.3.-20)
rt) 20 F .
l -
0 - -
0.5
201 1
|
1] e 1
0 02 04 0.6 0 0.5 | 1.5 2
t(s) g’

Fig. 4. Trajectories of the system (7), (8), with k
100, p = 0.0001, for different initial values xq
(x1,22](to): the output x(f) versus reference r(t) in
(a), phase portrait of the error states in (b).

24.02.2023 / IEEE CSS Italy Chapter Seminar Series, Cagliari / M Ruderman 16



ﬁ UNIVERSITETET | AGDER Numerical example of motion control trajectory

Control performance for piecewise smooth trajectory (e.g. motion control)
Compared with a standard (critically damped) PD linear feedback controller with

eo = —100e; — 20e2

(a) . . . . (b) I ' - '

I+ o linear
= nonlinear p=0
" 08 - nonlinear
05F
04
nonlinear control [ mememmeme e
0 ———reference r(t)
1 | 1 | | |
3 o 2 2.5 2 2
0 0.5 | 1 ((s) 0 0.5 | 1.5 2 t(s) 2.5
Fig. 5. Trajectories of the system (7), (8), with & = 100,

p = 0.0001: the output z(t) versus reference r(t) in
(a), the x2(t) state in (b) — compared with a case with-
out regularization (i.e. 4 = 0) and with a critically
damped proportional-derivative linear controller.
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Scaled OND-control for motion systems

= Extension for common motion systems
. 1. b : )
T1(t) + —x1(t) = —u(t) Tao(t) + xo(t) = Kult)
a a
Here, r; is the output motion state (i.e. relative displacement in the generalized coordinates)
of interest and w is the control input (i.e. generalized driving force). The parameters
a,b > 0 are identifiable, either from the frequency response (FR) measurements or from the
technical data sheets of the motion system under consideration.
= Scaled OND-control has the same properties as before
a |ele 1.
u(t) = ke 4+ — —I + —x1(%)
ble|+p b
e = r — x1, where r € C! is the reference value
= [f motion is perturbed by matched input & v
T + 7 | | —+ l\'.i'l = f v 1
|z1| + 1
when assuming r = 0, for the sake of simplicity, and ’ ’ ! ’ oD

non-zero initial conditions (1, x2)(t) # 0 r1(t) — £k~ at steady-state
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<1l| UNIVERSITETET | AGDER Experimental example

= 1DOF laboratory experimental setup (voice-coil actuator)

" |l PD/OND | " K .
control s(rs+1)
Y,
SMD |+

-
=]
=
=
= #  measurement e |
fitted linear model e ek
0 1 2 3
10 10 w (rad/sec) 10 10
04
LPF(dx ll'dl)
) —— SMD-based y,
202
z |
2 0
© ‘ .
> [ Al

=
2

2 3

o

I time (s)
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Experimental example (cont.)

= Comparison of OND and PD (critically damped) controllers, & = 1000

1 x1 03 [ PD control
-OND control
-reference
8 L
E; /
>
4 L
0
(@) 0 time (sec) ?
-3
b, 1 N [— PD control
12 [ f'\ _FF\' —— OND control 1
Py \, |-——-reference .
‘/}/\? ) \ £ r N\
sl /N :\Q b 4 N
=] ;g AN / A\
E r" l- -\‘ \\ l"/ '\‘ \\
1S R\ /2N
W\% / 5
L N N
4 g ‘-“\"\‘\ l;”f \1
N\ 75
[ R i
o L&

0.25 0.5

0.75

Measured position response of OND and PD controls to
the slope reference (a), control value (b), absolute control error (c)

0
(b) sinusoidal trajectory (of 0.5Hz and 2Hz frequency)

=103

X (m)

0

12+ manuall_y injected .
disturbance

e OIND control

————— reference value

© °

2 time (s)

4

OND with disturbance
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——~PD coatrol
——— OND control
—— reference

I

tume (sec)

1.5

Liv)

———PD control

——(OND control

ML
n

time (sec)

5

~ML
L

tmme (sec)
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