

Motion control with optimal nonlinear damping and convergent dynamics

Michael Ruderman

michael.ruderman@uia.no

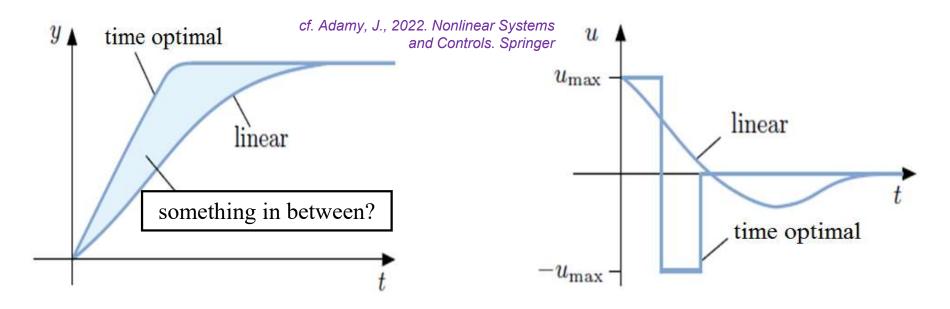
IEEE CSS Italy Chapter Seminar Series

24.02.2023 Università degli Studi di Cagliari

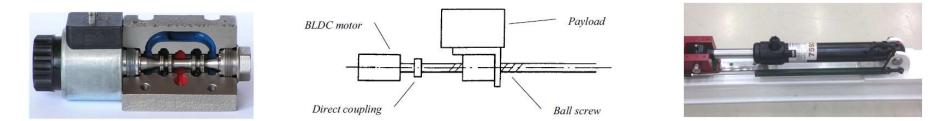
Outline

- Feedback damping in second-order systems
- Motion control with optimal nonlinear damping
- Extension and experimental control example

What is optimal for set-point control of a motion system?



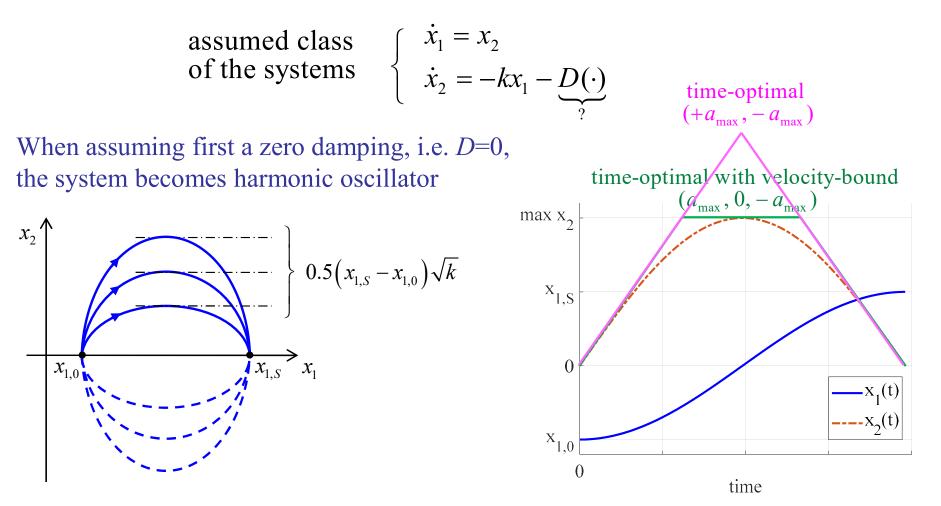
In variety of motion systems, including electro-/magneto-/hydro-/mechanical actuators



Linear controllers are always suboptimal

UNIVERSITETET I AGDER

• Consider the problem of optimal damping in 2^{nd} order control systems, with a potential field created by x_1 -output feedback



D=0 could be a candidate but (!) requires: (i) 'on-fly' calculation of the reference bias for keeping $x_{1,0} + 0.5(x_{1,S} - x_{1,0})$, (ii) exact stop at $x_{1,S}$ and no 'post-regulation'

Standard state-feedback control (equivalent to PD feedback control)

Closed-loop control system in the state-space form

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k & -d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \implies \alpha(s) = s^2 + ds + k: \text{ characteristic polynomial}$$

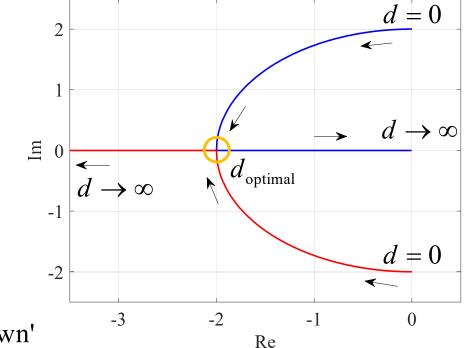
Rewriting the loop transfer function L(s) for the Root-locus with *d*-gain

$$1 + dL(s) = 1 + d\frac{s}{s^2 + k}$$

Analyzing the closed-loop dynamics for $d \in [0,...,\infty)$ (while *k*-gain is fixed)

Optimal (i.e. critical) damping:

 $s^{2} + ds + k = (s + \lambda)^{2}$: double real pole $\Rightarrow k = \lambda^{2}, d = 2\sqrt{k}$ $d < 2\sqrt{k}$: transient oscillations $d > 2\sqrt{k}$: dominant pole is 'slowing down'

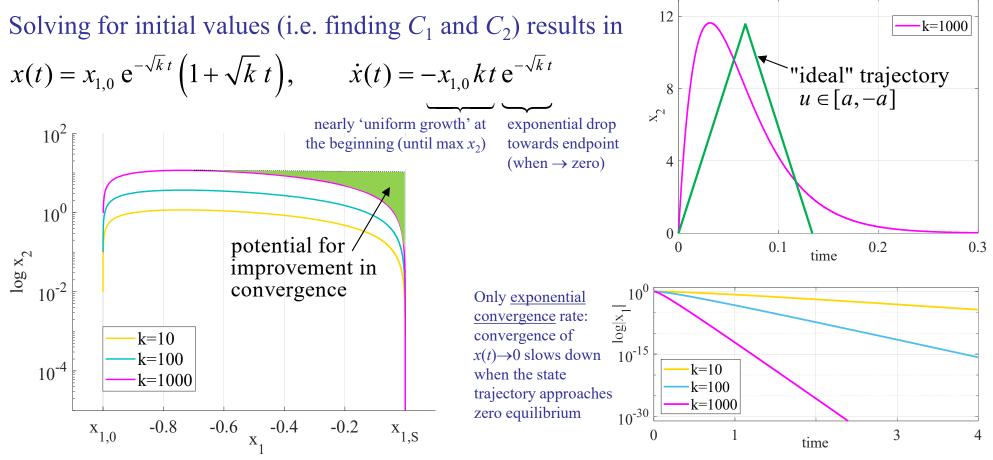


Closed-loop dynamics as an initial value problem

$$\ddot{x} + d\dot{x} + k = 0$$
, $x(0) = x_{1,0}$, $\dot{x}(0) = 0$; with $d = 2\sqrt{k}$ and $x_1 \equiv x, x_2 \equiv \dot{x}$

General homogeneous solution (for double real poles)

 $x(t) = C_1 e^{-\lambda t} + C_2 t e^{-\lambda t}$ with $\lambda = \sqrt{k}$



24.02.2023 / IEEE CSS Italy Chapter Seminar Series, Cagliari / M Ruderman

Outline

- Feedback damping in second-order systems
- Motion control with optimal nonlinear damping
- Extension and experimental control example

UNIVERSITETET I AGDER Feedback control with optimal nonlinear damping

(4)

(5)

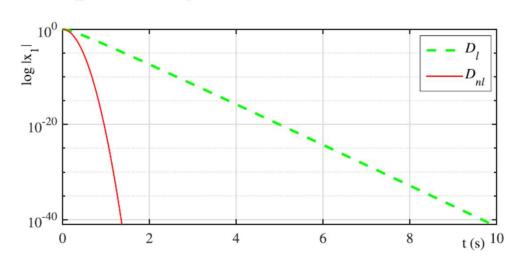
Introduced optimal nonlinear damping (OND) control

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = -kx_1 - x_2^2 |x_1|^{-1} \operatorname{sign}(x_2),$

v

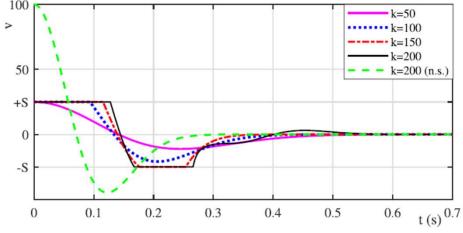
Main difference, comparing to linear (PD) feedback control, is the damping map D



OND-control in (4), (5) allows also for input signal v(t) to be saturated, $v \in [-S, ...+S]$

$$(x_1, x_2) \in \mathbb{R}^2 \setminus \{x_1 = 0 \mid x_2 \neq 0\}$$

Ruderman, 2021, Journal of Franklin Institute



0

x

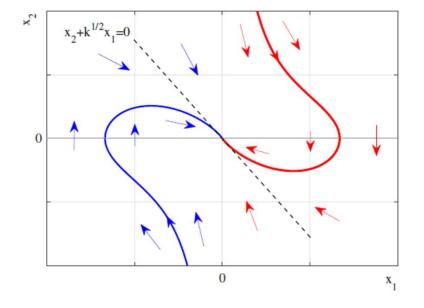
 $\dot{x}_2 = -kx_1 - D$

UNIVERSITETET I AGDER

Stability properties of OND-control

OND-control is globally asymptotically stable, converging to origin

alongside attractor $x_2 + \sqrt{k}x_1 = 0$



For attractor, consider steady-state of (4), (5):

$$\mathbf{0} = \begin{bmatrix} 0 & 1\\ -k & -|x_2||x_1|^{-1} \end{bmatrix} \cdot [x_1, x_2]^T$$

 $\Rightarrow k|x_1|x_1 = -|x_2|x_2 \Rightarrow kx_1^2 \operatorname{sign}(x_1) = -x_2^2 \operatorname{sign}(x_2)$

allowing only for real solutions of above, results in $x_2 + \sqrt{k}x_1 = 0$

24.02.2023 / IEEE CSS Italy Chapter Seminar Series, Cagliari / M Ruderman

For Lyapunov function candidate

$$V = \frac{1}{2}x_2^2 + k\frac{1}{2}x_1^2 \implies \dot{V} = -x_2^3|x_1|^{-1}\operatorname{sign}(x_2) \le 0$$

Asymptotic stability proof is by invariance (LaSalle) principle, i.e. for $\{x_1 \neq 0 \mid x_2 = 0\}$

Closed-loop passive if $\frac{|x_2|}{|x_1|} \ge \text{sign}(x_2) \text{sign}(x_1)$ 5): 5):

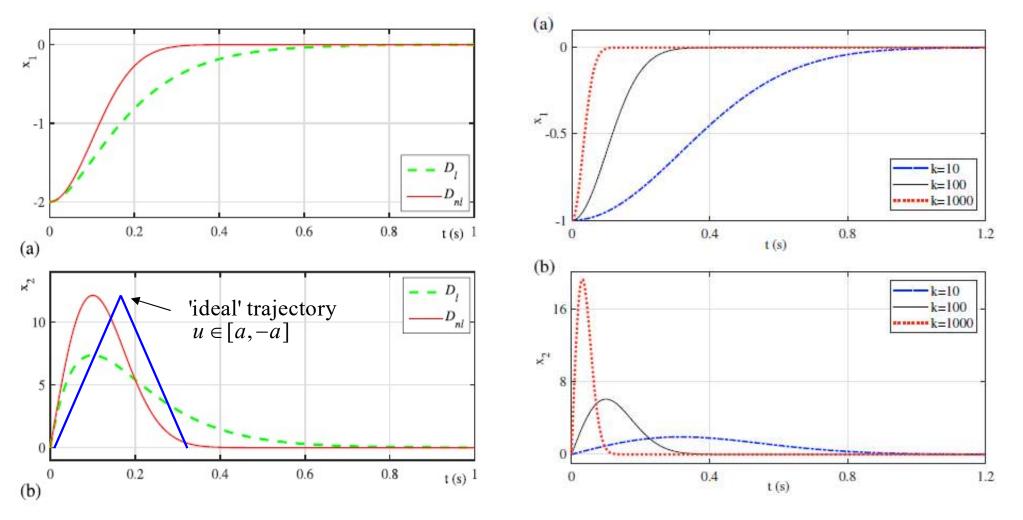
Nonlinearly-damped shape is

independent of k, which only

scales/stretches x_2 -trajectory

 Nonlinear damping brings x₂-trajectory closer to an 'ideal' bang-bang-type response

UNIVERSITETET I AGDER



24.02.2023 / IEEE CSS Italy Chapter Seminar Series, Cagliari / M Ruderman

- For total energy function (equivalent to Lyapunov function) $E = \frac{1}{2}x_2^2 + \frac{1}{2}kx_1^2 \implies \dot{E} = x_2\dot{x}_2 + kx_2x_1 = x_2(\underbrace{\dot{x}_2}_{\text{dynamics}} + kx_1)$ $\underbrace{\dot{x}_2}_{\text{dynamics}} + kx_1 - D(\cdot)$
 - linear damping
 nonlinear constant damping (Coulomb-type)
 ○ proposed optimal nonlinear damping
 ○ D(·) = d x₂
 D(·) = d sign(x₂)
 D(·) = d sign(x₂)
 D(·) = x₂² sign(x₂) | x₁ |⁻¹
 ⇒ E = -d | x₂ |
 ⇒ E = -d | x₂ |
- Considering the energy- and, correspondingly, power-balance yields

$$\dot{E}_{\text{supply}} + \dot{E}_{\text{dissipated}} + \underbrace{\dot{E}_{\text{conservative}}}_{\equiv x_2 \dot{x}_2} = 0$$

• linear damping control:

• nonlinear damping control:

supply power of control
through potential field
$$E_{\text{supply}} = \frac{1}{2}kx_1^2$$

 $kx_1x_2 - dx_2^2 = -\dot{E}_{\text{conservative}}$

independent of the control errors (i.e. set-point distance)

$$\underbrace{k x_1 x_2}_{\dot{E}_{\text{supply}}} - \frac{|x_2|^3}{|x_1|} = -\dot{E}_{\text{conservative}}$$

decreases for larger control errors (i.e. set-point distance)

Energetic (corresp. Lyapunov-function) aspects of regularized OND-control

Remark 5. When assuming a quadratic Lyapunov function candidate

$$V(x) = x^T P x = \frac{1}{2}ke_1^2 + \frac{1}{2}e_2^2, \qquad (12)$$

which represents the total energy level (i.e. potential energy plus kinetic energy) of the system (7), (8), its time derivative results in

$$\frac{d}{dt}V(x) = -\frac{|e_2|e_2^2}{|e_1| + \mu}.$$
(13)

Thus, the rate at which the control system (7), (8) reduces its energy is cubic in the error rate, i.e. $\sim |e_2|^3$, and hyperbolic in the error size, i.e. $\sim |e_1|^{-1}$, cf. Figure 3.

- Regularization factor $0 < \mu < < k$ prevents an infinite energy-rate and, thus, ensures a finite control action when $|e_1| \rightarrow 0$
- Cubic dependency of energy-rate from the error-rate enables the control to react faster to the error dynamics, like in case of nonsteady trajectory phases or sudden external perturbations

Ruderman, 2021, IFAC-PapersOnLine

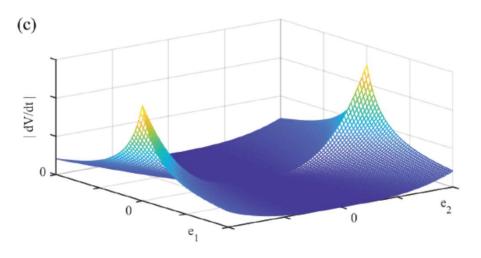
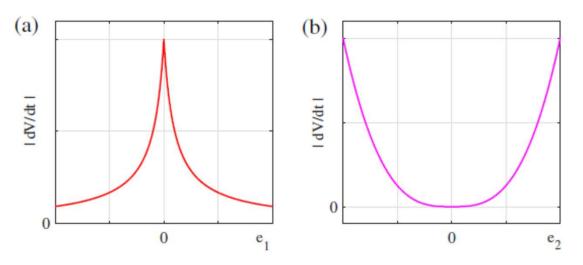


Fig. 3. Energy reduction rate $|\dot{V}|$ of the system (7), (8): depending on e_1 in (a), depending on e_2 in (b), and as overall error-states function according to (13) in (c).



• With introduced regularization factor $0 < \mu \ll k$ $e_1 = x_1 - r$ $\dot{e}_1 \equiv e_2 = x_2 - \dot{r}$

the error dynamics of OND-controlled system becomes

$$\dot{e}_1 = e_2, \quad \dot{e}_2 = -ke_1 - \frac{|e_2|e_2}{|e_1| + \mu}$$

- All previously shown OND-properties are preserved, while preventing singularities when $(e_1, e_2) \in \{e_1 = 0 | e_2 \neq 0\}$
- ☐ One is interested in stability of <u>not</u> a particular solution or invariant set, but stability properties of <u>all solutions</u> and some <u>limit solution</u> $\overline{x}(t)$, to which all other solutions will converge
- □ We focus on <u>convergent dynamics</u> by Demidovich*, while a lot of research was done in association with <u>incremental stability</u> and <u>contraction analysis</u> (contraction theory)

Key differences:

- Incremental stability does not imply the boundedness of solutions in forward time and the existence of a well-defined bounded steady-state solution
- Convergence does not imply decay of the 'distance' between any two solutions uniform in the initial distance

On compact sets: Convergence \Leftrightarrow Incremental Stability

* Pavlov et al., 2004, Systems & Control Letters

cf. e.g. Rüffer, Van De Wouw, Mueller, 2013, Systems & Control Letters

Notation of convergent system

$$\dot{x} = f(x, t) \quad (1)$$

Definition 1. The system (1) is said to be convergent if for all initial conditions $t_0 \in \mathbb{R}$, $\bar{x}_0 \in \mathbb{R}^n$ there exists a solution $\bar{x}(t) = x(t, t_0, \bar{x}_0)$ which satisfies:

(i) $\bar{x}(t)$ is well-defined and bounded for all $t \in (-\infty, \infty)$; (ii) $\bar{x}(t)$ is globally asymptotically stable.

Convergent systems according to Demidovich [1967]

Such solution $\bar{x}(t)$ is called a *limit solution*, to which all other solutions of the system (1) converge as $t \rightarrow \infty$. In other words, all solutions of a convergent system 'forget' their initial conditions after some transient time, which depends on exogenous values like the reference or disturbance, and thus converge asymptotically to $\bar{x}(t)$.

Sufficient condition for system to be convergent

Theorem 1. Consider the system (1). Suppose, for some positive definite matrix $P = P^T > 0$ the matrix

$$J(x,t) := \frac{1}{2} \left(P \frac{\partial f}{\partial x}(x,t) + \left[\frac{\partial f}{\partial x}(x,t) \right]^T P \right)$$
(2)

is negative definite uniformly in $(x,t) \in \mathbb{R}^n \times \mathbb{R}$ and $|f(0,t)| \leq \text{const} < +\infty$ for all $t \in \mathbb{R}$. Then the system (1) is convergent.

More details on Demidovich's definitions and proof of the Theorem 1 are in Pavlov, Pogromsky, et al. [2004] For output tracking of the reference trajectory $r(t) \in C^1$, we introduce the error state $e_1 = x_1 - r$. Its time derivative is $e_2 = x_2 - \dot{r}$, respectively. Note that for an output tracking of C^1 -trajectories, one can assume $\ddot{r}(t) = 0$ for $t > \tau$, while $t \leq \tau$ characterizes certain transient phase where $\dot{r} \neq \text{const.}$ In the sense of a motion control, for instance, the time $t \leq \tau$ will correspond to the transient phases of a system acceleration or deceleration when moving. If a reference trajectory r(t) contains multiple, but finite in time, transient phases with $\ddot{r}(t) \neq 0$, they will appear as temporary perturbations upon which the convergent dynamics of the control error, i.e. $||e_1, e_2|| \to 0$, must be guaranteed for $t > \tau$.

Note that the introduced here regularization term $0 < \mu \ll k$ does not act as an additional design parameter, yet it prevents singularity in solutions of the system (4), (5), cf. Section 2.2. Evaluating the Jacobian of f(x,t) with $x = [e_1, e_2]^T$, cf. (7), (8) and (1), one obtains

$$\frac{\partial f}{\partial x} = \tag{9}$$

 $= \begin{bmatrix} 0 & 1 \\ -k + |e_2| e_2 \operatorname{sign}(e_1) / (|e_1| + \mu)^2 - 2|e_2| / (|e_1| + \mu) \end{bmatrix}.$

Ruderman, 2021, IFAC-PapersOnLine

OND-control error dynamics becomes

$$\dot{e}_1 = e_2, (7)$$

$$\dot{e}_2 = -ke_1 - \frac{|e_2|e_2}{|e_1| + \mu}. (8)$$

Then, suggesting the positive definite matrix

$$P = \frac{1}{2} \begin{bmatrix} k & 0\\ 0 & 1 \end{bmatrix}, \tag{10}$$

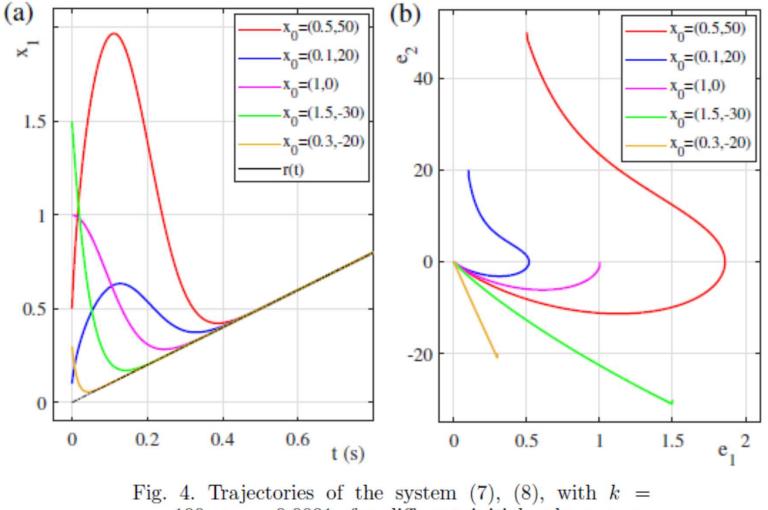
one can show that the matrix J(x, t), which is the solution of (2), is negative definite and, correspondingly, the Theorem 1 holds. For proving it, we substitute (9) and (10) into (2) and evaluate the matrix definiteness as

$$x^{T}J(x,t) x = -\frac{3}{4} \frac{|e_{2}|e_{2}^{2}(|e_{1}|+2\mu)}{(e_{1}+\mu\operatorname{sign}(e_{1}))^{2}} \le 0 \quad \forall x \neq 0.$$
(11)

Definiteness (not only semi-) of (11) implies; since substituting $e_2 = 0$ into (8) $\Rightarrow \dot{e}_2 = -ke_1$

 \Rightarrow the system (7),(8) is uniformly convergent, and $[e_1, e_2](t) = 0 \equiv \bar{x}$ is unique limit solution

Output trajectories for different initial values



100, $\mu = 0.0001$, for different initial values $x_0 \equiv [x_1, x_2](t_0)$: the output $x_1(t)$ versus reference r(t) in (a), phase portrait of the error states in (b).

Control performance for piecewise smooth trajectory (e.g. motion control) Compared with a standard (critically damped) PD linear feedback controller with $\dot{e}_2 = -100e_1 - 20e_2$

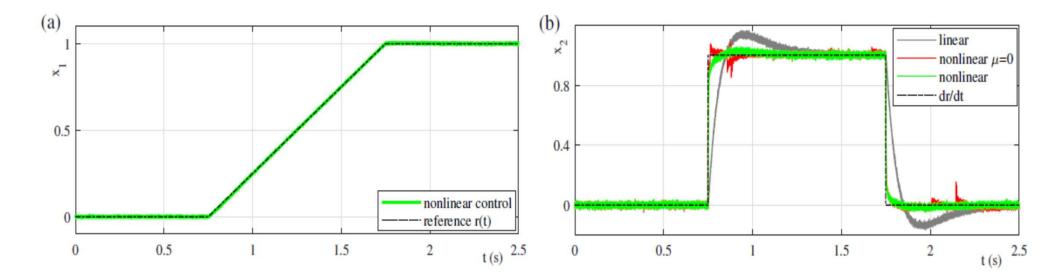


Fig. 5. Trajectories of the system (7), (8), with k = 100, $\mu = 0.0001$: the output $x_1(t)$ versus reference r(t) in (a), the $x_2(t)$ state in (b) – compared with a case without regularization (i.e. $\mu = 0$) and with a critically damped proportional-derivative linear controller.

Outline

- Feedback damping in second-order systems
- Motion control with optimal nonlinear damping
- Extension and experimental control example

Extension for common motion systems

$$\ddot{x}_1(t) + \frac{1}{a}\dot{x}_1(t) = \frac{b}{a}u(t) \qquad \qquad \tau \dot{x}_2(t) + x_2(t) = Ku(t)$$

Here, x_1 is the output motion state (i.e. relative displacement in the generalized coordinates) of interest and u is the control input (i.e. generalized driving force). The parameters a, b > 0 are identifiable, either from the frequency response (FR) measurements or from the technical data sheets of the motion system under consideration.

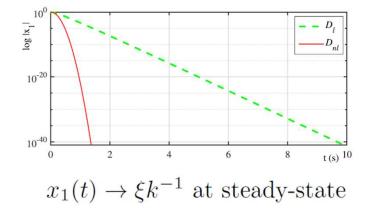
Scaled OND-control has the same properties as before

$$u(t) = ke + \frac{a}{b} \frac{|\dot{e}| \dot{e}}{|e| + \mu} + \frac{1}{b} \dot{x}_1(t)$$
$$e = r - x_1, \text{ where } r \in \mathcal{C}^1 \text{ is the reference value}$$

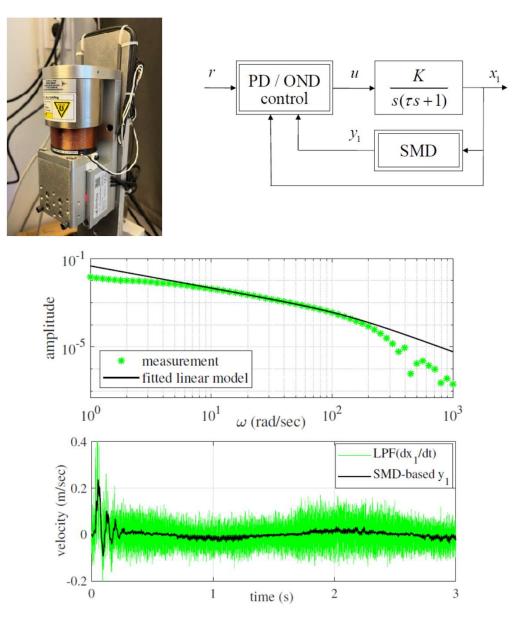
• If motion is perturbed by matched input ξ

$$\tau \ddot{x}_1 + \tau \frac{|\dot{x}_1| \dot{x}_1}{|x_1| + \mu} + kx_1 = \xi$$

when assuming r = 0, for the sake of simplicity, and non-zero initial conditions $(x_1, x_2)(t) \neq 0$



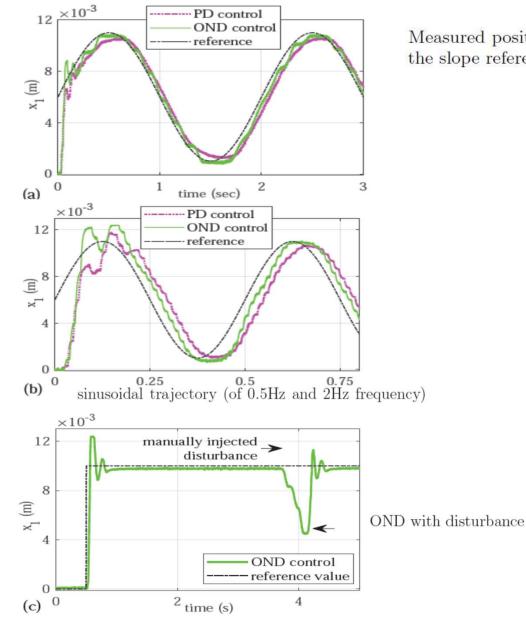
1DOF laboratory experimental setup (voice-coil actuator)





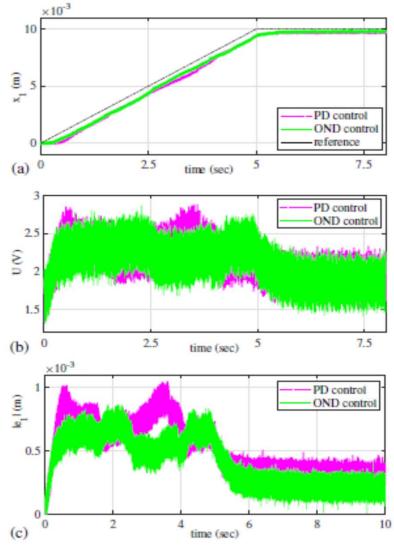
Experimental example (cont.)

• Comparison of OND and PD (critically damped) controllers, k = 1000



24.02.2023 / IEEE CSS Italy Chapter Seminar Series, Cagliari / M Ruderman

Measured position response of OND and PD controls to the slope reference (a), control value (b), absolute control error (c)



References to related works

- [1] Ruderman, M. Optimal nonlinear damping control of second-order systems. Journal of The Franklin Institute, Vol. 358(8), 2021, pp. 4292-4302
- [2] Ruderman, M. Convergent dynamics of optimal nonlinear damping control. IFAC-PapersOnLine, Vol. 54(17), 2021, pp. 141-144
- [3] Ruderman, M. Application of motion control with optimal nonlinear damping and convergent dynamics. 22nd Styrian Workshop on Automatic Control, Graz, Austria, Sep 2022, pp. 7-8
- [4] Ruderman, M. Motion control with optimal nonlinear damping: from theory to experiment. Control Engineering Practice, Vol. 127, 2022

Thank you for attention

Acknowledgment

This work is supported by the joint Norwegian-French mobility program IS-AUR. RCN-grant project number 340782.

https://prosjektbanken.forskningsradet.no/en/project/FORISS/340782

24.02.2023 / IEEE CSS Italy Chapter Seminar Series, Cagliari / M Ruderman