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- Feedback damping in second-order systems

- Motion control with optimal nonlinear damping

- Extension and experimental control example
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Problem statement

 What is optimal for set-point control of a motion system? 

Linear controllers are always suboptimal

something in between?

cf. Adamy, J., 2022. Nonlinear Systems 
and Controls. Springer

In variety of motion systems, including electro-/magneto-/hydro-/mechanical actuators    
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Problem statement (cont.)

 Consider the problem of optimal damping in 2nd order control 
systems, with a potential field created by x1-output feedback    

When assuming first a zero damping, i.e. D=0, 
the system becomes harmonic oscillator    
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Feedback with linear damping

 Standard state-feedback control (equivalent to PD feedback control)
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Closed-loop control system in the state-space form 

Rewriting the loop transfer function L(s) for the Root-locus with d-gain 
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Feedback with linear damping (cont.)

 Closed-loop dynamics as an initial value problem

1,0 1 20, (0) , (0) 0; with 2   and  ,x dx k x x x d k x x x x          

General homogeneous solution (for double real poles) 
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Solving for initial values (i.e. finding C1 and C2) results in 
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Outline
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Feedback control with optimal nonlinear damping

Main difference, comparing to linear (PD) 
feedback control, is the damping map D

OND-control in (4), (5) allows also for input 
signal v(t) to be saturated, v  [S,+S] 

 Introduced optimal nonlinear damping (OND) control

Ruderman, 2021, Journal of Franklin Institute

v
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Stability properties of OND-control

 OND-control is globally asymptotically stable, converging to origin 

For attractor, consider steady-state of (4), (5):   



allowing only for real solutions of above,  results in   



alongside attractor   
For Lyapunov function candidate   



Asymptotic stability proof is by invariance 
(LaSalle) principle, i.e. for    1 2{ 0 | 0}x x 

Closed-loop passive if   
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Linearly- & nonlinearly-damped response

 Nonlinear damping brings      
x2-trajectory closer to an ‘ideal’ 
bang-bang-type response 

'ideal' trajectory 
[ , ]u a a 

 Nonlinearly-damped shape is 
independent of k, which only 
scales/stretches x2-trajectory 
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Energy analysis of feedback-damped system

 For total energy function (equivalent to Lyapunov function)

 Considering the energy- and, correspondingly, power-balance yields 


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independent of the control errors (i.e. set-point distance)   

decreases for larger control errors (i.e. set-point distance)   
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Dissipation properties of OND-control    

Energetic (corresp. Lyapunov-function) aspects of regularized OND-control 

o Regularization factor 0<<<k
prevents an infinite energy-rate 
and, thus, ensures a finite control 
action when |e1| 0

o Cubic dependency of energy-rate 
from the error-rate enables the 
control to react faster to the error 
dynamics, like in case of non-
steady trajectory phases or 
sudden external perturbations

Ruderman, 2021, IFAC-PapersOnLine
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Convergent dynamics of OND-control   

 We focus on convergent dynamics by Demidovich*, while a lot of research was done in 
association with incremental stability and contraction analysis (contraction theory)

 One is interested in stability of not a particular solution or invariant set, but stability properties 
of all solutions and some limit solution , to which all other solutions will converge   ( )x t

* Pavlov et al., 2004, Systems & Control Letters

 With introduced regularization factor 

the error dynamics of OND-controlled system becomes 

 All previously shown OND-properties are preserved, 
while preventing singularities when 1 2 1 2( , ) { 0 | 0}e e e e  








cf. e.g. Rüffer, Van De Wouw, Mueller, 
2013, Systems & Control Letters
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Preliminaries of convergent dynamics   

Notation of convergent system  

Sufficient condition for system to be convergent  

Convergent systems      
according to Demidovich [1967]

More details on Demidovich’s
definitions and proof of the 
Theorem 1 are in Pavlov, 
Pogromsky, et al. [2004]
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Convergent dynamics of OND-control   

OND-control error dynamics becomes    

Definiteness (not only semi-) of (11) implies; since substituting            into (8) 

 the system (7),(8) is uniformly convergent, and                              is unique limit solution   

Ruderman, 2021, IFAC-PapersOnLine
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Numerical example of convergent OND-control system   

Output trajectories for different initial values 
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Numerical example of motion control trajectory   

Control performance for piecewise smooth trajectory (e.g. motion control) 

Compared with a standard (critically damped) PD linear feedback controller with 
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Outline

- Feedback damping in second-order systems

- Motion control with optimal nonlinear damping

- Extension and experimental control example



24.02.2023 / IEEE CSS Italy Chapter Seminar Series, Cagliari / M Ruderman 19

Scaled OND-control for motion systems

 Extension for common motion systems 

 Scaled OND-control has the same properties as before 

 If motion is perturbed by matched input 
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Experimental example

 1DOF laboratory experimental setup (voice-coil actuator)  
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Experimental example (cont.)

 Comparison of OND and PD (critically damped) controllers,  
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