
Chapter # - will be assigend by editors

ANALYZING STUDENTS’ COMPUTATIONAL
THINKING AND PROGRAMMING SKILLS FOR
MATHEMATICAL PROBLEM SOLVING

A Case Study

Nils Kristian Hansen – University of Agder, Kristiansand, Norway
Said Hadjerrouit – University of Agder, Kristiansand, Norway

Abstract: The purpose of this chapter is to analyze students’ computational thinking and
programming skills for mathematical problem solving in a programming course
at the undergraduate level. The chapter critically reviews the research literature
in the field and proposes a model that connects mathematical thinking to
computational thinking and programming. The model is then used as a
theoretical basis to collect and analyze data from three groups of three students
solving a mathematical task. The results reveal that the participating students
faced several challenges: Lack of mathematical thinking, insufficient experience
with computational thinking, and, more importantly, lack of deeper connection
between computational and mathematical thinking, severely impeded their
work. Conclusions, limitations, practical implications, and future research work
are drawn from the results to explore mathematical problem solving through
computational thinking and programming in a larger group of students. Studies
involving a larger number of participants would be relevant to compare with
findings of the present study to achieve more reliability and validity.

Key words: Algorithm, computational thinking (CT), mathematical thinking (MT),
mathematical problem solving, programming.

1. INTRODUCTION

There is an increasing attention on CT and programming in mathematics
education at the undergraduate level in science studies. A primary motivation
for introducing CT into mathematics classrooms is the rapidly changing nature
of competencies of the discipline required for future work in society and the

2 Chapter # - will be assigend by editors

professional world. CT and programming can be employed in a variety of
ways that reflect the specificity of the different academic disciplines. The
benefit of CT and programming is that it could extend the skills characterizing
MT by restructuring both how problems are formulated, modelized and solved
(Kallia et al., 2021). Hence, there is a need to explore the way in which MT
connects to CT and programming for solving mathematical problems.

This chapter initially introduces and critically comments on three core
components that characterize the up-to-date review of the research literature
on the topic, and includes definitions, concepts, and examples of current
research. These core issues are mathematical thinking (MT), computational
thinking (CT), and programming. Followingly, the chapter reconceptualizes
the current research in the field, and presents an integration of the research
domain by integrating the three core components in a single model functioning
as a whole. The model is then used as a theoretical basis coupled with an
appropriate methodology to understand, analyze, and critically reflect on
students’ abilities for mathematical and computational thinking and
programming skills for mathematical problem solving. Finally, the results are
discussed, practical implications and future potential of the research are
drawn.

The study addresses the following research question: How do student
groups engage in mathematical problem solving by means of MT, CT, and
programming in a first-year undergraduate course?

The chapter is structured as follows. Firstly, it reviews the current
literature in the field, and proposes the theoretical basis of the study. Secondly,
the methodology is presented. Thirdly, the results are analyzed and discussed.
Finally, the limitations and implication of the study and future work conclude
the chapter.

2. LITERATURE REVIEW AND THEORETICAL
BASIS

Three core components characterize the current research in the field:
Mathematical thinking (MT), computational thinking (CT), and
programming, and how these are connected to each other. These are presented
and critically reviewed in three separate sections. Then, the chapter presents
an integration of the three core components into a single model that functions
as a theoretical basis of this study.

- will be assigend by editors. 3

2.1 Mathematical thinking (MT)

According to Shute, Sun, and Asbell-Clarke (2017, p. 145), MT consists of
three parts: “beliefs about math, problem solving processes, and justification
for solutions”. MT involves the “application of math skills to solve math
problems, such as equations and functions” (Ibid, p. 145). A similar term for
MT is mathematics abilities, which refers to “a combination of cognitive
abilities and knowledge that contribute to one’s performance on a wide range
of mathematical tasks” (Blacksmith 2020, p. 2783). Accordingly, it is argued
that individuals with high levels of mathematical abilities are more likely to
successfully complete difficult mathematical tasks, in contrast to individuals
who cannot complete easy mathematical tasks. These are described as having
low levels of mathematical abilities.

MT and CT share several communalities: Mathematical modelling,
problem solving, data analysis, statistics, and probability (Ang, 2021; Shute,
Sun, and Asbell-Clarke, 2017; Weintrop et al., 2016). Mathematical
modelling provides a good foundation for the use, practice, and development
of CT. Likewise, problem solving is common both to MT and CT. Data
analysis requires numerical thinking in problem solving, especially when
empirical data are involved. Moreover, it is argued that CT improves logical
and reasoning skills, problem solving, and academic performance in
mathematics education (Martínez-García, 2021).

2.2. Computational thinking (CT)

CT is basically more about thinking than computing and computer
programming (Li, Schoenfeld, & diSessa, 2020). It represents a “universally
applicable attitude and skill set everyone, not just computer scientists, would
be eager to learn and use’’ (Wing 2006, p. 33). Clearly, CT is a fundamental
skill for virtually any discipline, including mathematics, physics, and
engineering.

More specifically, Wing (2014) characterizes CT as “the thought
processes involved in formulating a problem and expressing its solution(s) in
such a way that a computer – human or machine – can effectively carry out”.
Mistfelt and Ejsing-Duun (2015) describes CT as the ability to work with
algorithms understood as systematic and structured descriptions of problem
solving and construction strategies. Likewise, Filho and Mercat (2018) defines
algorithmic thinking as the process of solving a problem step-by-step in an
effective, non-ambiguous and organized way that can be translated into
instructions to solve problems of the same type. On the other hand, Csizmadia
et al. (2015) emphasizes the role of logical reasoning in CT to make sense of
problems through thinking clearly and precisely. It allows students to draw on

4 Chapter # - will be assigend by editors

their own knowledge to analyze problems, design algorithms, build, debug,
and correct programs derived from the algorithm and associated solution to
the problem.

More precisely, CT means to engage in several cognitive processes with
the goal of solving problems efficiently and creatively (Csizmadia et al., 2015;
Wing, 2006). Firstly, it is the ability to think algorithmically, that is a way of
getting to a solution to the problem, step-by-step. Secondly, it is a way of
thinking about problems in terms of decomposition of their components into
manageable units that can be understood, solved, developed, and evaluated
separately. Thirdly, CT is associated with generalization in terms of
identifying patterns, similarities, and connections, and exploiting those
features to generalize the problem-solving process to similar problems. In
other words, generalization is a way of solving new problems based on
previous solutions, building on prior experience, and generalizing these
experiences. Fourthly, CT uses abstraction to make problems easier to think
about. Abstraction is the process of making problems more understandable
through reducing unnecessary details. Finally, CT makes use of evaluation,
which is the process of ensuring that the problem-solving process, whether an
algorithm or program, is fit for the purpose.

These cognitive processes correspond to those being accepted as the four
“cornerstones” of CT, or taxonomy of CT practices (Weintrop et al. 2016).
These are data practices, modelling and simulation practices, computational
and problem-solving practices, and, in lesser degree, system thinking
practices.

Data practices are about collecting, creating, manipulating, analyzing, and
visualizing data. These practices correspond to abstraction in CT, which aims
at gathering important data to carefully examine the problem by neglecting
non-essential aspects, as highlighted above. Modelling and simulation
practices are ways to implement abstraction, decomposition, generalization,
and design algorithms. These practices are about constructing, using, and
assessing computational models to understand a problem, find and test
solutions. Computational problem-solving practices relate both to CT
(especially abstraction and evaluation) and programming, and consist of
preparing and developing computational solutions, choosing effective
computational tools, assessing different approaches to problems, as well as
troubleshooting and debugging. These practices are not entirely new, and are
in high accordance with those observed as characteristics of MT. In addition,
these practices are linked to computer programming as highlighted above.

- will be assigend by editors. 5

2.3. Programming

Programming has changed over the last 30 years, but the basic principles
remain the same. Programming is based on logic, procedures, and functions
(Misfelts & Ejsing-Duun, 2015). According to Ang (2021), one effective way
of developing CT skills and practices would be through learning programming
and solving problems that require some form of coding. One problem-solving
skill is to think in a logical and systematic manner, and develop an algorithm,
by breaking problems into smaller parts, making use of flowcharts to visualize
the flow of the process. This skill is equivalent to simplifying or decomposing
a problem and constructing procedures (or functions) and sub-procedures in
the code. Moreover, writing code requires following the syntax of the
language being used, and keeping to certain rules, which means to practice
abstraction or abstract reasoning, because only the most important and
relevant pieces of information will be extracted and used, like modelling in
MT.

Coding also requires the use of variables as representations of factors
involved in a problem. Moreover, coding involves repeating a piece of code
or iterating code through loops and managing data sets as well. Such skills
help to develop a sense of pattern recognition and identify similarities and
differences in tackling modelling problems, which connects well to MT.
However, it is not enough to know basic programming to be able to use
programming techniques in a mathematical context. Programming is closely
related to CT, but traditionally, programming education required producing
algorithms from scratch (Kaufmann & Stenseth, 2020). Nowadays, it is
recommended to pass through CT to be able to design algorithms (Wing,
2014). Designing algorithms involves creating representations of the solution
process, including representations such as flowcharts, pseudo-code, or
systems diagrams. It involves further activities of decomposition, abstraction,
and generalization. Coding is the next essential step to translate the algorithm
into code form and evaluating it to ensure that it functions correctly under all
anticipated conditions. Debugging is the systematic analysis and evaluation
using skills such as testing, tracing, and logical thinking to predict and verify
outcomes. Finally, applying is the adoption and generalization of pre-existing
solutions to meet the requirements of a similar problem in another context.
This includes the development of an algorithm and subsequent program in one
context that can be re-used in a different context.

2.4. Connecting MT, CT, and programming

Connecting MT, CT, and programming in a meaningful way is at the heart of
tackling mathematical problem solving. The connection between CT and MT

6 Chapter # - will be assigend by editors

is not new and has a legacy of over 45 years in the theory of constructionism
(Papert & Harel, 1991). Likewise, the connection of computer programming
and CT with MT has been recognized since the development of the Logo
programming language (Shodiev, 2015). In other words, CT and
programming complement MT as a way of reasoning to solve mathematical
problems (Wing, 2006). As highlighted above, MT and CT have a lot of
communalities such as problem solving, modelling, data analysis and
interpretation. Moreover, the relationship between modelling, analysis, and
solution of mathematical problems falls under the umbrella of CT and is
grounded on computer programming (Buteau, et al., 2018).

The close connection between MT and CT provides opportunities for
building efficient algorithms for mathematical problem solving in form of
structured step-by-step construction processes that can be implemented using
programming languages (Topallia & Cagiltay, 2018; Wing, 2008, 2014).
More specifically, mathematical problem solving through CT involves
expressing a solution by means of decomposition in smaller parts, abstraction
by removing unnecessary details, generalization from previous experiences,
algorithmic thinking and transformation into a program that can be evaluated
(Csizmadia et al, 2015). The challenge is to engage students in a mathematical
problem-solving process through CT by designing effective algorithms to be
translated into efficient computer programs that can be tested, modified, and
improved iteratively. There is also a clear connection between CT and coding,
but CT is not the same as programming, but being able to program is a result
of being able to think computationally (Shute, Sun, & Asbell-Clarke, 2017;
Wing 2006). Rooted in these theoretical considerations, a model of
mathematical problem solving is elaborated inspired by Hadjerrouit and
Hansen (2020). Figure 1 illustrates the model and demonstrates four points.

- will be assigend by editors. 7

Figure 1. A model for mathematical problem-solving connecting MT, CT, and programming.

This model works as follows. Firstly, it is a pre-requisite that students have a
good understanding of mathematical concepts and a capability for abstract
reasoning and logical deduction to benefit from CT. Secondly, CT should in
turn enable students to logically analyze, abstract, and decompose
mathematical problems and design an algorithm step-by-step before
programming it. Thirdly, students should be able to translate the mathematical
solution and associated algorithm into programming code that can be tested
and evaluated. Finally, the solution process should be generalized to a variety
of similar problems.

This is not a linear model starting from a mathematical problem and
ending up with program code testing. It is rather an iterative model with
feedbacks to previous processes to make sense of program output or validating
the algorithm.

Based on the model in figure 1 and the taxonomy of CT practices proposed
by Weintrop et al. (2016), the goal is to gather and analyze data on students’
CT, MT, and programming activities

3. METHODOLOGY

3.1 Context of the study, research question, and methods

8 Chapter # - will be assigend by editors

This work is a single case study conducted in the context of a first-year
undergraduate course on programming with applications in mathematics. The
participants were a convenience sample consisting of 9 students volunteering
from a class of 50, enrolled in the course in 2020. The students had varied
knowledge background in mathematics, but no experience with CT. The
course introduced the basic constructs of the MATLAB programming
language, e.g., single variables, arrays, control flow statements and functions.
The course also discussed major steps in systems development, i.e., analysis,
design, implementation, and testing. Ultimately programming was used for
numerical analysis, and the concept of CT was briefly introduced through a
worked example.

The main data collection method is participant observation of three
groups, each consisting of three students with varying knowledge in
mathematics. The students were presented with a mathematical task to solve,
while responding to questions in dialogue with the teacher on the solving
process, by means of MT, CT, and programming activities. Open-ended
questions were also used to gain a deeper understanding of the process. The
analysis of the results seeks indications of students’ engagement in CT and
MT when solving mathematical problems. It uses a deductive-inductive
strategy based on the interplay between the theoretical basis of the study and
the empirical data (Patton, 2002).

3.2 The task

The task for the group work was: “Write a MATLAB-function calculating the
circumference of a triangle, based on the coordinates of its three corners.”

A fruitful approach to solve the task is to start by using CT to build a coarse
computational model. Decomposition will be an important factor in this, as
the task naturally splits into two subtasks, one for calculating the length of a
triangle side, and one for systematically adding the side lengths.

To determine how to calculate a side length, MT is required, as the
Pythagorean theorem will be a natural choice. I.e., given two corners,
𝐶ଵ: (𝑥ଵ, 𝑦ଵ) and 𝐶ଶ: (𝑥ଶ, 𝑦ଶ), the corresponding side length can be calculated
by the Pythagorean formula 𝐷 = ඥ(𝑥ଶ − 𝑥ଵ)ଶ + (𝑦ଶ − 𝑦ଵ)ଶ, as illustrated in
figure 2.

- will be assigend by editors. 9

Figure 2. Calculating distance by the Pythagorean theorem.

A switch back and forth between MT and CT is then necessary, in order to
create a model of how to the coordinates provided in a MATLAB function can
be employed in the Pythagorean theorem. The given task does not specify any
particular data structure for the coordinates, so making an appropriate choice
is required. Considering the need for systematically processing the sides, an
array will be appropriate.

A natural next step will be to design an algorithm for calculating the length
of a side, translate the algorithm into MATLAB code, and validate it through
testing. If the test fails, one must revert to CT, and reason about the cause of
the error and how it can be corrected. There may be several iterations
involving validation and correction until the code passes the test.

Switching to the second subtask, CT is required to create an algorithm for
systematically processing the three sides, adding the lengths. A for-loop
should present itself as a convenient control structure, easily implementable
in MATLAB. Followingly a switch back and forth between CT and MT is
required to associate the triangle corners with the loop variable.

At this point a border value problem must be addressed, since triangle
corners are numbered modularly, i.e., 1-2-3-1, whereas loop variables
progress linearly, i.e., 1-2-3-4. The problem may be remedied both by using
MT and CT. An MT solution will be to calculate modulo 3. However, since
MATLAB array indexing starts at 1 instead of 0, implementing this solution
in program code is a bit awkward. A CT solution will be adding a dummy
point 4 with coordinates equal to point 1 to the coordinate array.

Next a new program test is appropriate. Again, several loops involving
correction and testing may be required until the code passes.

Finally, using CT in doing a generalization will be natural. An obvious
generalization will be to expand the algorithm and program to work on
polygons with an arbitrary number of corners.

10 Chapter # - will be assigend by editors

3.3 Group work activities

The group work consisted of three sessions with three students in each,
scheduled for 45 minutes. It took place in the video conferencing system
Zoom, due to COVID-19-restrictions. The sessions were later recorded and
transcribed. The task was introduced in the Zoom chat at the beginning of each
session, and the students were asked to reflect on it and engage in a discussion
on the solving process. When required, the teacher outlined steps, asked
questions, and gave hints. In all groups one of the students undertook the task
of coding in MATLAB, sharing screen with the others.

4. RESULTS

The results describe how the participating students engaged in solving the
task, with focus on the processes outlined in figure 1. During the work, the
teacher suggested test coordinates based on the triangle shown in the
GeoGebra screenshot in figure 3. In the following the teacher is referred to as
T, and the students as S1 ‒ S9.

Figure 3. Triangle test coordinates

4.1 Group 1

T presents the task, and when there is no response, prompts the students for a
suggestion on how to attack it.

After a minute S1 suggests calculating the distance between the corners
and then adding them. But without a clear distinction between the tasks
involved. When T wants to know what to start with, S1 suggests finding a
length, though with imprecise wording. At this stage, the students struggle
with the initial process of understanding what the mathematical problem

- will be assigend by editors. 11

consists of, and are unable to use MT and CT to design a coarse computational
model. T then proposes establishing a method for calculating the length of a
triangle side as a subtask to begin with.

It takes considerable elaborations from T to convince the students that the
Pythagorean theorem may be used for calculating a side length. Though the
theorem supposedly is well known, the students seem unable to use MT to
employ it in practice.

Next an algorithm for the calculation may be formulated, but there is no
student initiative to take the process further. T then starts a discussion on
selecting a data structure appropriate for the coordinates. The students realize
the need for a variable for each coordinate pair but fail to generalize the idea
to a data structure convenient for handling three coordinate pairs in
succession.

S2 and S3 engage in a discussion initiated by T, and after some hints agree
to that an array will be appropriate.

At this point S2 and S3 demonstrates that they now are able to outline the
major steps in an overall algorithm:

T: (…) if we have an array, we can have a loop variable, and then we can
traverse that array coordinate by coordinate.

S3: Yes.
S2: Yes, and then we do Pythagoras.
T: Yes.
S2: Step by step.
T now tries to make the students realize that completing an algorithm and

testing the code for calculating a side length will be a fruitful next step, but
without success. T then attempts to make the students reflect on generalizing
the algorithm, making it applicable to polygons. S2 now demonstrates to have
grasped the general idea:

S2: When we are using a loop, all that is needed is adding some numbers
to the array. Almost.

The students followingly describe the structure of an algorithm, but it is
vague in detail. T again attempts to discuss the idea of completing and testing
the first subtask, but eventually is required to suggest the solution:

T: (…) in the first version of the program, would you try to include
everything, or would you construct it bit by bit?

S2: Eh, I would have tried to include all at one time. And then checked if
it worked or not. And then, after that, if it works, I would have tried to find
points where it could be improved.

T: Yes. Do you think a good strategy would be to calculate the length of
a single side and make that work first, and then extend it to the triangle?

S2: Yes, that would have been a good idea.

12 Chapter # - will be assigend by editors

Next S2 suggests starting to write program code, and shares screen with
the MATLAB programming environment. Apparently, the students are more
comfortable with proceeding straight to the programming phase than
theoretically elaborating on an algorithm.

On instructions from T S2 creates an array with test coordinates based on
the triangle in figure 3, and with some assistance creates a syntactically correct
MATLAB function skeleton, but then work stops. T reminds of the suggestion
made earlier of not doing everything at once. Though, still after this allusion
on how to simplify the algorithm the students seem unable to perform the
transition between algorithm and program code. T suggests calculating the
change in x-coordinate between corner one and two. S2 then types "xdiff = x2
- x1". This is correct in an MT-context, but unrelated to the actual MATLAB-
variables. S3 spots the difficulty, and is able to, assisted by T, instruct S2 on
correcting the problem. The students are however unable to implement the
Pythagorean theorem as MATLAB-code without strong hints from T.

The code is now tested, and MATLAB correctly outputs 𝑠ଵ as in figure 3.
When T suggests testing with corners 2 and 3, S2 is able to replace the array
indexes and test again. The test is successful.

Now the subtask of calculating the length of a triangle side is finished, and
an entire cycle in figure 1 is completed. MT has been used to determine that
Pythagoras may be used to calculate the distance between two corners, CT has
been used in producing an algorithm, the algorithm has been implemented in
MATLAB-code, the code has been tested, and the output has been verified to
make sense mathematically.

T now wants the students to engage in the second subtask. Work however
does not progress, even when T reminds of the consensus on using a loop. T
has to provide detailed instructions on how to merge the distance formula with
the loop. But then S3 realizes that the loop variable, 𝑛, must be used to identify
the triangle corners, and S1 employs MT to establish that if 𝑛 is a corner
number, the adjacent corner number is 𝑛 + 1.

S3 now identifies the border value problem that will appear when 𝑛 = 3.
T postpones the problem by suggesting setting the upper loop boundary to 𝑛 =
2, temporarily.

To make the students attack the problem of making the algorithm
accumulate side lengths, strong engagement from T is required. But finally,
S3 is able to coach S2 on how to implement the appropriate mechanism. The
program is tested, and correctly outputs 𝑠ଵ + 𝑠ଶ as in figure 3.

T now instructs S2 to set the upper loop boundary back to 𝑛 = 3. A test is
run, and MATLAB responds with an index-out-of-bounds error message.

S1 now employs MT and suggests modulo calculations. T acknowledges
the idea but suggests using CT and adding a fourth coordinate pair equal to

- will be assigend by editors. 13

corner 1. The program is tested, and correctly outputs the circumference of the
triangle, 𝑠ଵ + 𝑠ଶ + 𝑠ଷ, as in figure 3.

T now describes how the algorithm may be extended to work on an
arbitrary polygon, without inviting the student to reflect on it.

When T ends the session by asking the students to sum up the steps taken
in creating the final MATLAB program, there is no response. They thus seem
unable to articulate the process of using MT and CT in problem solving. But
when T outlines the steps undertaken, the students agree to that the experience
will be profitable when engaging in similar tasks later.

4.2 Group 2

S6 has some prior knowledge of the task and starts by suggesting the
Pythagorean theorem as a method for calculating the length of the triangle
sides. T then suggests starting with a single side and making that work, thus
doing a decomposition in subtasks and suggesting a workflow, instead of
leaving that to the students.

S6 now proposes arrays as a suitable data structure for the corner
coordinates.

There is some confusion on how to provide test data, so T asks if
somebody can start MATLAB. By doing this, T goes straight to the
programming phase, without further elaboration on MT and CT.

S4 starts MATLAB, sharing screen. When T invites the students to suggest
test data, S6 gives an odd comment:

S6: (…) We probably want some coordinates that are equal, some that are
negative, some that are positive.

One may suspect that S6 here mechanically refers to a test strategy
appropriate in the context of previous exercises, without abstracting,
generalizing, and adapting the strategy to the current context.

T now suggests creating test data i MATLAB, based on figure 3. S6
followingly takes charge and instructs S4 on how to create a data structure in
the form of MATLAB arrays.

With the test data ready, T suggests creating a MATLAB-function for
calculating a side length, but there is no response. The students thus seem
unable to make the transition from the MT idea of the Pythagorean theorem
to actual program code. However, on hints from T, S6 again takes charge and
instructs S4 on writing a function header with the coordinate arrays as
arguments.

The function body is however empty, the students still have not been able
to produce neither algorithm nor program code.

T then reverts to MT and demonstrates on figure 2 how a side length may
be calculated from the corner coordinates. But the student's first attempt to

14 Chapter # - will be assigend by editors

provide a function body reveals that they confuse the two subtasks. T reminds
that the current subtask is to calculate the length of a single side.

S6 now is able to instruct S4 on what to type, with very little intervention
from T. The result is correct, apart from that the calculated length is not
assigned to the function's return variable. This is a flaw in implementing the
algorithm as program code, which S4 is able to correct when T draws attention
to MATLAB warnings.

The program is tested, and correctly outputs the length of 𝑠ଵ as in figure
3. T then asks the students what the next step should be. S6 replies:

S6: We should probably do that for the rest of … find an expression
then… probably a loop doing this for the remaining sides.

T: Yes, why do you suggest a loop?
S6: Because then you can take from point one to point three, or side one

to side three.
T: Yes.
S6: A for-loop then since you know the fixed values and the fixed steps

between. That will execute the operation three times, so that you do not have
to write the operation for the three different points.

Though the students initially were unable to suggest loop as a control flow
structure, S6 is now able to describe it in detail. Thus, after producing some
program code, S6 reverts to CT and is able to combine the subtasks of the
algorithm.

With only a few hints from T S6 instructs S4 on how to program the loop.
A transition to MT/CT is then required to employ the loop variable, 𝑛, in
indexing the corners. When T suggests replacing index 2 with 𝑛 + 1, S4 is
able to replace all four indexes correctly uninstructed.
The code is tested, and MATLAB outputs an array-out-of-bounds message.
S6 immediately identifies the problem as 𝑛 + 1 = 4 when 𝑛 = 3, but suggests
correcting it by setting 𝑛 = 2 as upper loop bound, apparently unaware that
this will cause omission of the third triangle side. T however allows the
correction.

MATLAB now outputs the length of 𝑠ଶ, as in figure 3. T then demonstrates
on figure 3 that 𝑠ଵ and 𝑠ଶ are not added, hinting on a missing mechanism that
has been used in previous exercises. S6 takes the point and is able to use CT
to incorporate addition in the loop.

MATLAB now outputs the length of 𝑠ଵ + 𝑠ଶ, as in figure 3. To include 𝑠ଷ,
S6 first reverts to CT and suggests adding an extra instance of the distance
formula. But when T relates the indexes to the triangle sides, S6 employs MT
and suggests using a modulus calculation. T accepts this as a good strategy
but suggests adding a corner 4 equal to corner 1, as a quick fix. MATLAB
now outputs the correct circumference of the triangle, as in figure 3.

- will be assigend by editors. 15

When summing up, S6 is able to describe how to generalize the algorithm
to work on an arbitrary polygon, in the form of MATLAB mechanisms. S6 is
also able to articulate the steps undertaken in the completed task but is not
quite able to articulate a test strategy.

4.3 Group 3

When the group initially is asked to reflect on how to attack the task, S7
employs MT and CT in a first thought about systematically calculating and
adding the distances between adjacent corners. The thought is somewhat
unclear, however, as S7 refers to distances as absolute values. T comments on
that S7 has mentioned two subtasks, but none of the students seem able to use
CT in a systematic way to identify the tasks, even after hints. But when T
identifies them, S7 correctly identifies calculating the length of one side as the
task to start with.

The students are however unable to suggest a method for calculating a
length, even when T refers to previous exercises. S7 even naively suggest
calculating the length of a hypothenuse by adding the lengths of the remaining
triangle sides. A 3-minute demonstration from T on figure 2 is required until
S9 suggests using Pythagoras.

T now proposes creating an algorithm and a program for testing this idea.
S9 starts sharing screen with MATLAB. But, even after strong hints from T,
the students are unable to suggest neither test strategy nor a suitable data
structure for the coordinates. To simplify, T suggests creating single variable
test coordinates for corner 1 and 2. Dictation is however required for S9 to
create the variables in MATLAB code.

S9 sketches a MATLAB function but without a parameter list. When T
suggests calculating the change in x-value, S9 employs the symbols x1 and
x2, which are nonexistent in the function. T claims that there is a problem, but
nobody is able to identify it. When T explains that x1 and x2 must be provided
explicitly, S9 however creates the parameter list required.

S9 is now able to translate the Pythagorean theorem into correct MATLAB
code.

A test is run, but the program gives no output since the function's return
variable is not assigned a value. When T draws the attention to MATLAB
warnings, S9 however detects and corrects the error.

A new test outputs the correct length of 𝑠ଵ as in figure 3.
T followingly invites the students to consider a more suitable data structure
for the coordinates. S7 and S9 realizes there will be a problem "to get all the
coordinates in" but have no further suggestions. When T proposes arrays, S9
is however able to, with hints from T, to implement the necessary changes in

16 Chapter # - will be assigend by editors

the MATLAB-code. S9 now raises a question of the order of the two corners
used to calculate side length:

S9: Is it number two minus number one, or what?
T: Does it really matter? Does anybody have an opinion on that? What

would have happened if we swapped 1 and 2?
S7: We would have gotten another number.
S9: It would be negative.
T: Yes. We would have gotten opposite sign.
S9: Minus two. Yes.
The discussion continues, but the students are unable to employ MT to

determine that the order of the endpoints is unimportant when calculating the
length of a line.

Work stops. On request from T on a natural next step, S7 suggests adding
the lengths, but there is no further progress. Even when T asks the students to
reflect on mechanisms used in previous exercises, nobody realizes the need
for a loop. T is required to give detailed instructions.

S9 seems to understand that the loop variable will have to be used in
identifying the corners, and after a hint from T is able to use MT and CT to
make the adaptations required.

The program code is tested, and the boundary value problem manifests
itself. The students are however unable to suggest neither MT nor CT solution
to the problem. T then instructs on adding a corner 4 equal to corner 1 to the
coordinate array.

Now a test run outputs 𝑠ଷ as in figure 3. Referring to the figure, T explains
what the error is, hinting that the same kind of problem has been solved in
previous exercises. S9 realizes that a mechanism for adding the side lengths is
required but is unable to implement it. S8 suggests employing a variable
named "sum-of-series". In the context of many previous exercises this has
been a sensible name, but it is inappropriate in the current context. S8 thus
demonstrates a lack of ability to abstract, generalize and adapt a mechanism
from previous experiences.

Eventually T has to instruct S9 on how to implement the mechanism
required. The program is tested and outputs the correct circumference of the
triangle as in figure 3.

Ultimately T asks the students how they would have attacked the problem
on their own. S9 would have thought about it a bit, then started to program.
When asked about taking it all on at once, says to go by it part by part, but is
unable to identify the parts. When T asks how the solution may be generalized
to work on arbitrary polygons, S9 is able to provide an adequate answer. This
demonstrates a certain ability to used CT in solving a task, but the ability has
major flaws.

- will be assigend by editors. 17

5. DISCUSSION

The main findings of this study are twofold. Firstly, the introduction of CT to
students at the undergraduate level presents many challenges for teachers
committed to improving students’ MT. Secondly, the mathematical task
presented to the students to develop their MT and CT skills was challenging
for novice learners for many reasons, considering their minimum prior
knowledge of CT and programming, their varied mathematical knowledge
levels, and mathematical problem-solving skills. The findings report on the
interactions and transitions that emerged between MT, CT, and programming
that were observed during the mathematical problem-solving process. These
are summarized as follows:

Mathematical problem, MT - CT interactions: Most students struggled
with the initial process of understanding what mathematical problem the task
consisted of, and as a result were unable to use MT and CT to model and
decompose the task without the teacher’s guidance. It appears from the
students’ interviews that the lack of MT hindered them in making sense of the
task and develop a problem-solving strategy translatable into an algorithm.
The transition between MT and CT was also challenging, even though these
thinking processes are based on logical reasoning. As a result, the interaction
between MT and CT was not straightforward and at times very challenging
and incoherent. Most students were unable to identify the problem until the
teacher pointed it out. Guided by the teacher, some students were able to
translate the identified mathematical expression into correct MATLAB-code,
but without the mediation of CT.

Transition algorithm – code: As a consequence of low MT, most
students failed to use CT to develop an algorithm step-by-step, or presented a
solution only as program code without an explicit algorithmic description and
associated steps to be taken in obtaining a solution. Some students were able
to use CT and describe an algorithm and program code. However, they often
switched rapidly to the programming phase, without further elaboration on
creating a coherent algorithm. The transition between algorithm and
MATLAB-code was thus challenging as the students struggled with
implementing the algorithm in the form of MATLAB code.

CT – algorithm - decomposition: When students managed to develop
some sort of algorithm, they were often unable to reduce the complexity or
simplify the algorithm and re-construct it step-by-step, or decompose the task
in smaller subtasks. Likewise, the direct transition from MT to code without
the mediation of CT did not work well, e.g., the translation of the
mathematical distance formula into MATLAB-code.

Program code: When it comes to programming, many students were able
to understand the program after it had been developed under the guidance of

18 Chapter # - will be assigend by editors

the teacher. However, extending the program based on extensions to the
algorithm proved difficult. For example, once the need for a loop was
established, the students struggled with merging the previously coded distance
formula with the loop. It is worth noting, however, that in one case a student,
initially unable to see the need for a loop, was able to revert to CT and describe
the proper mechanism after writing some preliminary program code.

Abstraction – Generalization: The results also show that generalization
was difficult, as the students demonstrated low ability to abstract, generalize
and re-use programming concepts known from previous exercises in new
contexts. For instance, the students required strong guidance to see the need
for a loop, and in some cases suggested reusing mechanisms unmodified from
previous exercises. Likewise, few students were able to generalize the
algorithm or extend the program to work on arbitrary polygons.

Code evaluation: Finally, students struggled with code validation and
testing. On request from the teacher, most students initially were incapable of
suggesting a test strategy, and ultimately were unable to describe the strategy
actually employed during the group work.

6. IMPLICATIONS

Four implications can be drawn from this study. Firstly, the results indicate
that a requirement for engaging in mathematical problem solving through CT
and programming is a solid foundation in both MT and CT, as well as an
understanding of the interaction between the two.

Secondly, to make MT interact better with CT, a learning environment
around first-year undergraduate mathematics courses should be well designed
to ensure a smooth integration of CT and MT. Moreover, the learning
environment should promote explicit CT processes that expose students to
algorithmic thinking, decomposition, generalization, abstract reasoning,
evaluation, and associated with the four “cornerstones” of CT (Weintrop et al.
2016). This is the key in deciding how to introduce CT at the undergraduate
level and assist students in learning to think computationally. A learning
environment where students engage in CT associated with appropriate
learning activities, varied and intrinsically motivating tasks that are suited to
their mathematical knowledge level may lead to greater involvement and
learning progression. Such a learning environment is potentially powerful in
providing more opportunities for students to develop their own understanding
of CT and programming concepts. In other words, it lays the ground for
learning autonomy. However, student autonomy cannot be fully expected for
novices without good knowledge background in MT and familiarities with CT
and programming.

- will be assigend by editors. 19

Thirdly, as this study shows, the role of a knowledgeable teacher in MT
and CT is still important to assist students in designing algorithms and
implementing computational solutions for mathematical problem solving. In
this regard, there will be a need for professional development for teachers that
enhances not only their understanding of CT, but also about the ways in which
CT interacts with MT.

A final implication of this research is the need to reconsider the
interactions between MT, CT, and programming because the findings show
more overlaps than what was proposed in the model in figure 1. Indeed, a more
in-depth examination of the interactions between CT and MT is necessary to
highlight their communalities and potential differences and suggest some
modifications to the proposed model.

7. LIMITATIONS AND FURTHER WORK

The low number of participants (N=9) limits how much the results can be
generalized. Hence, a larger number of participants from several classes would
have been more appropriate to achieve higher generalization. Nevertheless,
the data collection and analysis method used in this study to generate a large
and in-depth set of qualitative data, seems to be justified for addressing the
research question and issues on CT, MT, and programming critically. Thus,
even though this study is limited to task-based interviews of three groups of
three students each, the findings help to advance current knowledge in the
field both from a theoretical and practical point of view.

Future work will include a study exploring the implications of a learning
environment with explicit focus on CT and MT in a larger number of
participants to ensure more reliability and validity of the results.

REFERENCES

Ang, K.C. (2021). Computational thinking and mathematical modelling. In: F. K. S. Leung et

al. (eds.). Mathematical Modelling Education in East and West. International Perspectives

on the Teaching and Learn (pp.19-34). Springer Nature Switzerland AG 2021.
Blacksmith, N. (2020). Mathematical abilities. In: V. Zeigler-Hill, & T. K. Shackelford (2020).

Encyclopedia of Personality and Individual Differences (pp. 2783-2785). Springer.

Buteau, C., et al. (2018). Computational thinking in university mathematics education: A

theoretical framework. In: A. Weinberg, et al. (Eds.). Proceedings of the 21st annual

Conference on Research in Undergraduate Mathematics Education (pp. 1171–1179). San

Diego, CA: RUME.

20 Chapter # - will be assigend by editors

Csizmadia, A., et al. (2015). Computational thinking: A guide for teachers. Retrieved from

https://eprints.soton.ac.uk/424545/1/150818_Computational_Thinking_1_.pdf

Filho, P., & Mercat, C. (2018). Teaching computational thinking in classroom environments:

A case for unplugged scenario. In: V. Gitirana, et al. (eds.). Proceedings of Re(s)sources

2018 - Understanding Teachers' Work Through Their Interactions with Resources for

Teaching (pp. 296-299). Lyon: France.

Hadjerrouit, S., & Hansen, N.-K. (2020). Students engaging in mathematical problem-solving

through computational thinking and programming activities: A synthesis of two opposite

experiences. Proceedings of the 17th International Conference on Cognition and

Exploratory Learning in the Digital Age (CELDA 2020), pp. 91-98.

Kallia, M., et al. (2021). Characterising computational thinking in mathematics education: A

literature-informed Delphi study. Research in Mathematics Education, 23(2), pp. 159-187.

Kaufmann, O.T., & Stenseth, B. (2020). Programming in mathematics education. International

Journal of Mathematical Education in Science and Technology, 52(7), pp. 1029-1048.

Li, Y., Schoenfeld, A.H., diSessa, A.A., et al. (2020). Computational thinking is more about

thinking than computing. Journal for STEM Education Research 3, pp. 1–18.

Martínez-García, E. (2021). Computational thinking: The road to success in education.

Academia Letters, Article 3973.

Misfeldt, M., & Ejsing-Duun, S. (2015). Learning mathematics through programming: An

instrumental approach to potentials and pitfalls. In: K. Krainer, & N. Vondrová (eds.).

Proceedings of CERME 9 (pp. 2524-2530). Prague, Czech Republic.

Papert, S., & Harel, I. (1991). Constructionism. Norwood, NJ: Ablex Publishing.

Patton, M. Q. (2002). Qualitative research & evaluation methods. London: Sage Publications.

Shodiev, H. (2015). Computational thinking and simulation in teaching science and

mathematics. In: M. G. Cojocaru et al. (eds.). Interdisciplinary Topics in Applied

Mathematics, Modeling and Computational Science. Springer Proceedings in Mathematics

& Statistics 117, pp. 405-410.

Topalli, D., & Cagiltay, N. E. (2018). Improving programming skills in engineering education

through problem-based game projects with Scratch. Computers & Education 120, pp. 64-

74.

Shute, V.J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking.

Educational Research Review 22, pp. 142-158.

Weintrop, D. (2016). Defining computational thinking for mathematics and science classrooms.

Journal of Science Education and Technology 25, pp.127–147.

Wing, J. M. (2006). Computational thinking. Communication of the ACM 49(3), pp. 33–35.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical

Transactions of the Royal Society of London A: Mathematical, Physical and Engineering

Sciences, 366(1881), pp. 3717-3725.

Wing, J. M. (2014). Computational thinking benefits society. In: Social Issues in Computing,

January 10, 2014. New York: Academic Press. Retrieved from

http://socialissues.cs.toronto.edu/index.html%3Fp=279.html

