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Abstract: The purpose of this chapter is to analyze students’ computational thinking and 
programming skills for mathematical problem solving in a programming course 
at the undergraduate level. The chapter critically reviews the research literature 
in the field and proposes a model that connects mathematical thinking to 
computational thinking and programming. The model is then used as a 
theoretical basis to collect and analyze data from three groups of three students 
solving a mathematical task. The results reveal that the participating students 
faced several challenges: Lack of mathematical thinking, insufficient experience 
with computational thinking, and, more importantly, lack of deeper connection 
between computational and mathematical thinking, severely impeded their 
work. Conclusions, limitations, practical implications, and future research work 
are drawn from the results to explore mathematical problem solving through 
computational thinking and programming in a larger group of students. Studies 
involving a larger number of participants would be relevant to compare with 
findings of the present study to achieve more reliability and validity. 

Key words: Algorithm, computational thinking (CT), mathematical thinking (MT), 
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1. INTRODUCTION 

There is an increasing attention on CT and programming in mathematics 
education at the undergraduate level in science studies. A primary motivation 
for introducing CT into mathematics classrooms is the rapidly changing nature 
of competencies of the discipline required for future work in society and the 
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professional world. CT and programming can be employed in a variety of 
ways that reflect the specificity of the different academic disciplines. The 
benefit of CT and programming is that it could extend the skills characterizing 
MT by restructuring both how problems are formulated, modelized and solved 
(Kallia et al., 2021). Hence, there is a need to explore the way in which MT 
connects to CT and programming for solving mathematical problems. 

This chapter initially introduces and critically comments on three core 
components that characterize the up-to-date review of the research literature 
on the topic, and includes definitions, concepts, and examples of current 
research. These core issues are mathematical thinking (MT), computational 
thinking (CT), and programming. Followingly, the chapter reconceptualizes 
the current research in the field, and presents an integration of the research 
domain by integrating the three core components in a single model functioning 
as a whole. The model is then used as a theoretical basis coupled with an 
appropriate methodology to understand, analyze, and critically reflect on 
students’ abilities for mathematical and computational thinking and 
programming skills for mathematical problem solving. Finally, the results are 
discussed, practical implications and future potential of the research are 
drawn. 

The study addresses the following research question: How do student 
groups engage in mathematical problem solving by means of MT, CT, and 
programming in a first-year undergraduate course? 

The chapter is structured as follows. Firstly, it reviews the current 
literature in the field, and proposes the theoretical basis of the study. Secondly, 
the methodology is presented. Thirdly, the results are analyzed and discussed. 
Finally, the limitations and implication of the study and future work conclude 
the chapter. 

2. LITERATURE REVIEW AND THEORETICAL 
BASIS 

Three core components characterize the current research in the field: 
Mathematical thinking (MT), computational thinking (CT), and 
programming, and how these are connected to each other. These are presented 
and critically reviewed in three separate sections. Then, the chapter presents 
an integration of the three core components into a single model that functions 
as a theoretical basis of this study. 
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2.1 Mathematical thinking (MT) 

According to Shute, Sun, and Asbell-Clarke (2017, p. 145), MT consists of 
three parts: “beliefs about math, problem solving processes, and justification 
for solutions”. MT involves the “application of math skills to solve math 
problems, such as equations and functions” (Ibid, p. 145). A similar term for 
MT is mathematics abilities, which refers to “a combination of cognitive 
abilities and knowledge that contribute to one’s performance on a wide range 
of mathematical tasks” (Blacksmith 2020, p. 2783). Accordingly, it is argued 
that individuals with high levels of mathematical abilities are more likely to 
successfully complete difficult mathematical tasks, in contrast to individuals 
who cannot complete easy mathematical tasks. These are described as having 
low levels of mathematical abilities. 

MT and CT share several communalities: Mathematical modelling, 
problem solving, data analysis, statistics, and probability (Ang, 2021; Shute, 
Sun, and Asbell-Clarke, 2017; Weintrop et al., 2016). Mathematical 
modelling provides a good foundation for the use, practice, and development 
of CT. Likewise, problem solving is common both to MT and CT. Data 
analysis requires numerical thinking in problem solving, especially when 
empirical data are involved. Moreover, it is argued that CT improves logical 
and reasoning skills, problem solving, and academic performance in 
mathematics education (Martínez-García, 2021). 

2.2. Computational thinking (CT) 

CT is basically more about thinking than computing and computer 
programming (Li, Schoenfeld, & diSessa, 2020). It represents a “universally 
applicable attitude and skill set everyone, not just computer scientists, would 
be eager to learn and use’’ (Wing 2006, p. 33). Clearly, CT is a fundamental 
skill for virtually any discipline, including mathematics, physics, and 
engineering. 

More specifically, Wing (2014) characterizes CT as “the thought 
processes involved in formulating a problem and expressing its solution(s) in 
such a way that a computer – human or machine – can effectively carry out”. 
Mistfelt and Ejsing-Duun (2015) describes CT as the ability to work with 
algorithms understood as systematic and structured descriptions of problem 
solving and construction strategies. Likewise, Filho and Mercat (2018) defines 
algorithmic thinking as the process of solving a problem step-by-step in an 
effective, non-ambiguous and organized way that can be translated into 
instructions to solve problems of the same type. On the other hand, Csizmadia 
et al. (2015) emphasizes the role of logical reasoning in CT to make sense of 
problems through thinking clearly and precisely. It allows students to draw on 
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their own knowledge to analyze problems, design algorithms, build, debug, 
and correct programs derived from the algorithm and associated solution to 
the problem. 

More precisely, CT means to engage in several cognitive processes with 
the goal of solving problems efficiently and creatively (Csizmadia et al., 2015; 
Wing, 2006). Firstly, it is the ability to think algorithmically, that is a way of 
getting to a solution to the problem, step-by-step. Secondly, it is a way of 
thinking about problems in terms of decomposition of their components into 
manageable units that can be understood, solved, developed, and evaluated 
separately. Thirdly, CT is associated with generalization in terms of 
identifying patterns, similarities, and connections, and exploiting those 
features to generalize the problem-solving process to similar problems. In 
other words, generalization is a way of solving new problems based on 
previous solutions, building on prior experience, and generalizing these 
experiences. Fourthly, CT uses abstraction to make problems easier to think 
about. Abstraction is the process of making problems more understandable 
through reducing unnecessary details. Finally, CT makes use of evaluation, 
which is the process of ensuring that the problem-solving process, whether an 
algorithm or program, is fit for the purpose. 

These cognitive processes correspond to those being accepted as the four 
“cornerstones” of CT, or taxonomy of CT practices (Weintrop et al. 2016). 
These are data practices, modelling and simulation practices, computational 
and problem-solving practices, and, in lesser degree, system thinking 
practices. 

Data practices are about collecting, creating, manipulating, analyzing, and 
visualizing data. These practices correspond to abstraction in CT, which aims 
at gathering important data to carefully examine the problem by neglecting 
non-essential aspects, as highlighted above. Modelling and simulation 
practices are ways to implement abstraction, decomposition, generalization, 
and design algorithms. These practices are about constructing, using, and 
assessing computational models to understand a problem, find and test 
solutions. Computational problem-solving practices relate both to CT 
(especially abstraction and evaluation) and programming, and consist of 
preparing and developing computational solutions, choosing effective 
computational tools, assessing different approaches to problems, as well as 
troubleshooting and debugging. These practices are not entirely new, and are 
in high accordance with those observed as characteristics of MT. In addition, 
these practices are linked to computer programming as highlighted above. 
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2.3. Programming 

Programming has changed over the last 30 years, but the basic principles 
remain the same. Programming is based on logic, procedures, and functions 
(Misfelts & Ejsing-Duun, 2015). According to Ang (2021), one effective way 
of developing CT skills and practices would be through learning programming 
and solving problems that require some form of coding. One problem-solving 
skill is to think in a logical and systematic manner, and develop an algorithm, 
by breaking problems into smaller parts, making use of flowcharts to visualize 
the flow of the process. This skill is equivalent to simplifying or decomposing 
a problem and constructing procedures (or functions) and sub-procedures in 
the code. Moreover, writing code requires following the syntax of the 
language being used, and keeping to certain rules, which means to practice 
abstraction or abstract reasoning, because only the most important and 
relevant pieces of information will be extracted and used, like modelling in 
MT. 

Coding also requires the use of variables as representations of factors 
involved in a problem. Moreover, coding involves repeating a piece of code 
or iterating code through loops and managing data sets as well. Such skills 
help to develop a sense of pattern recognition and identify similarities and 
differences in tackling modelling problems, which connects well to MT. 
However, it is not enough to know basic programming to be able to use 
programming techniques in a mathematical context. Programming is closely 
related to CT, but traditionally, programming education required producing 
algorithms from scratch (Kaufmann & Stenseth, 2020). Nowadays, it is 
recommended to pass through CT to be able to design algorithms (Wing, 
2014). Designing algorithms involves creating representations of the solution 
process, including representations such as flowcharts, pseudo-code, or 
systems diagrams. It involves further activities of decomposition, abstraction, 
and generalization. Coding is the next essential step to translate the algorithm 
into code form and evaluating it to ensure that it functions correctly under all 
anticipated conditions. Debugging is the systematic analysis and evaluation 
using skills such as testing, tracing, and logical thinking to predict and verify 
outcomes. Finally, applying is the adoption and generalization of pre-existing 
solutions to meet the requirements of a similar problem in another context. 
This includes the development of an algorithm and subsequent program in one 
context that can be re-used in a different context. 

2.4. Connecting MT, CT, and programming 

Connecting MT, CT, and programming in a meaningful way is at the heart of 
tackling mathematical problem solving. The connection between CT and MT 
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is not new and has a legacy of over 45 years in the theory of constructionism 
(Papert & Harel, 1991). Likewise, the connection of computer programming 
and CT with MT has been recognized since the development of the Logo 
programming language (Shodiev, 2015). In other words, CT and 
programming complement MT as a way of reasoning to solve mathematical 
problems (Wing, 2006). As highlighted above, MT and CT have a lot of 
communalities such as problem solving, modelling, data analysis and 
interpretation. Moreover, the relationship between modelling, analysis, and 
solution of mathematical problems falls under the umbrella of CT and is 
grounded on computer programming (Buteau, et al., 2018). 

The close connection between MT and CT provides opportunities for 
building efficient algorithms for mathematical problem solving in form of 
structured step-by-step construction processes that can be implemented using 
programming languages (Topallia & Cagiltay, 2018; Wing, 2008, 2014). 
More specifically, mathematical problem solving through CT involves 
expressing a solution by means of decomposition in smaller parts, abstraction 
by removing unnecessary details, generalization from previous experiences, 
algorithmic thinking and transformation into a program that can be evaluated 
(Csizmadia et al, 2015). The challenge is to engage students in a mathematical 
problem-solving process through CT by designing effective algorithms to be 
translated into efficient computer programs that can be tested, modified, and 
improved iteratively. There is also a clear connection between CT and coding, 
but CT is not the same as programming, but being able to program is a result 
of being able to think computationally (Shute, Sun, & Asbell-Clarke, 2017; 
Wing 2006). Rooted in these theoretical considerations, a model of 
mathematical problem solving is elaborated inspired by Hadjerrouit and 
Hansen (2020). Figure 1 illustrates the model and demonstrates four points. 
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Figure 1. A model for mathematical problem-solving connecting MT, CT, and programming. 

 
This model works as follows. Firstly, it is a pre-requisite that students have a 
good understanding of mathematical concepts and a capability for abstract 
reasoning and logical deduction to benefit from CT. Secondly, CT should in 
turn enable students to logically analyze, abstract, and decompose 
mathematical problems and design an algorithm step-by-step before 
programming it. Thirdly, students should be able to translate the mathematical 
solution and associated algorithm into programming code that can be tested 
and evaluated. Finally, the solution process should be generalized to a variety 
of similar problems. 

This is not a linear model starting from a mathematical problem and 
ending up with program code testing. It is rather an iterative model with 
feedbacks to previous processes to make sense of program output or validating 
the algorithm. 

Based on the model in figure 1 and the taxonomy of CT practices proposed 
by Weintrop et al. (2016), the goal is to gather and analyze data on students’ 
CT, MT, and programming activities 

3. METHODOLOGY 

3.1 Context of the study, research question, and methods 
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This work is a single case study conducted in the context of a first-year 
undergraduate course on programming with applications in mathematics. The 
participants were a convenience sample consisting of 9 students volunteering 
from a class of 50, enrolled in the course in 2020. The students had varied 
knowledge background in mathematics, but no experience with CT. The 
course introduced the basic constructs of the MATLAB programming 
language, e.g., single variables, arrays, control flow statements and functions. 
The course also discussed major steps in systems development, i.e., analysis, 
design, implementation, and testing. Ultimately programming was used for 
numerical analysis, and the concept of CT was briefly introduced through a 
worked example. 

The main data collection method is participant observation of three 
groups, each consisting of three students with varying knowledge in 
mathematics. The students were presented with a mathematical task to solve, 
while responding to questions in dialogue with the teacher on the solving 
process, by means of MT, CT, and programming activities. Open-ended 
questions were also used to gain a deeper understanding of the process. The 
analysis of the results seeks indications of students’ engagement in CT and 
MT when solving mathematical problems. It uses a deductive-inductive 
strategy based on the interplay between the theoretical basis of the study and 
the empirical data (Patton, 2002). 

3.2 The task 

The task for the group work was: “Write a MATLAB-function calculating the 
circumference of a triangle, based on the coordinates of its three corners.” 

A fruitful approach to solve the task is to start by using CT to build a coarse 
computational model. Decomposition will be an important factor in this, as 
the task naturally splits into two subtasks, one for calculating the length of a 
triangle side, and one for systematically adding the side lengths. 

To determine how to calculate a side length, MT is required, as the 
Pythagorean theorem will be a natural choice. I.e., given two corners, 
𝐶ଵ: (𝑥ଵ, 𝑦ଵ) and 𝐶ଶ: (𝑥ଶ, 𝑦ଶ), the corresponding side length can be calculated 
by the Pythagorean formula 𝐷 = ඥ(𝑥ଶ − 𝑥ଵ)ଶ + (𝑦ଶ − 𝑦ଵ)ଶ, as illustrated in 
figure 2. 
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Figure 2. Calculating distance by the Pythagorean theorem. 

 
A switch back and forth between MT and CT is then necessary, in order to 
create a model of how to the coordinates provided in a MATLAB function can 
be employed in the Pythagorean theorem. The given task does not specify any 
particular data structure for the coordinates, so making an appropriate choice 
is required. Considering the need for systematically processing the sides, an 
array will be appropriate. 

A natural next step will be to design an algorithm for calculating the length 
of a side, translate the algorithm into MATLAB code, and validate it through 
testing. If the test fails, one must revert to CT, and reason about the cause of 
the error and how it can be corrected. There may be several iterations 
involving validation and correction until the code passes the test. 

Switching to the second subtask, CT is required to create an algorithm for 
systematically processing the three sides, adding the lengths. A for-loop 
should present itself as a convenient control structure, easily implementable 
in MATLAB. Followingly a switch back and forth between CT and MT is 
required to associate the triangle corners with the loop variable. 

At this point a border value problem must be addressed, since triangle 
corners are numbered modularly, i.e., 1-2-3-1, whereas loop variables 
progress linearly, i.e., 1-2-3-4. The problem may be remedied both by using 
MT and CT. An MT solution will be to calculate modulo 3. However, since 
MATLAB array indexing starts at 1 instead of 0, implementing this solution 
in program code is a bit awkward. A CT solution will be adding a dummy 
point 4 with coordinates equal to point 1 to the coordinate array. 

Next a new program test is appropriate. Again, several loops involving 
correction and testing may be required until the code passes. 

Finally, using CT in doing a generalization will be natural. An obvious 
generalization will be to expand the algorithm and program to work on 
polygons with an arbitrary number of corners. 
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3.3 Group work activities 

The group work consisted of three sessions with three students in each, 
scheduled for 45 minutes. It took place in the video conferencing system 
Zoom, due to COVID-19-restrictions. The sessions were later recorded and 
transcribed. The task was introduced in the Zoom chat at the beginning of each 
session, and the students were asked to reflect on it and engage in a discussion 
on the solving process. When required, the teacher outlined steps, asked 
questions, and gave hints. In all groups one of the students undertook the task 
of coding in MATLAB, sharing screen with the others. 

4. RESULTS 

The results describe how the participating students engaged in solving the 
task, with focus on the processes outlined in figure 1. During the work, the 
teacher suggested test coordinates based on the triangle shown in the 
GeoGebra screenshot in figure 3. In the following the teacher is referred to as 
T, and the students as S1 ‒ S9. 
 

Figure 3. Triangle test coordinates 

4.1 Group 1 

T presents the task, and when there is no response, prompts the students for a 
suggestion on how to attack it. 

After a minute S1 suggests calculating the distance between the corners 
and then adding them. But without a clear distinction between the tasks 
involved. When T wants to know what to start with, S1 suggests finding a 
length, though with imprecise wording. At this stage, the students struggle 
with the initial process of understanding what the mathematical problem 
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consists of, and are unable to use MT and CT to design a coarse computational 
model. T then proposes establishing a method for calculating the length of a 
triangle side as a subtask to begin with. 

It takes considerable elaborations from T to convince the students that the 
Pythagorean theorem may be used for calculating a side length. Though the 
theorem supposedly is well known, the students seem unable to use MT to 
employ it in practice. 

Next an algorithm for the calculation may be formulated, but there is no 
student initiative to take the process further. T then starts a discussion on 
selecting a data structure appropriate for the coordinates. The students realize 
the need for a variable for each coordinate pair but fail to generalize the idea 
to a data structure convenient for handling three coordinate pairs in 
succession. 

S2 and S3 engage in a discussion initiated by T, and after some hints agree 
to that an array will be appropriate. 

At this point S2 and S3 demonstrates that they now are able to outline the 
major steps in an overall algorithm: 

T: (…) if we have an array, we can have a loop variable, and then we can 
traverse that array coordinate by coordinate. 

S3: Yes. 
S2: Yes, and then we do Pythagoras. 
T: Yes. 
S2: Step by step. 
T now tries to make the students realize that completing an algorithm and 

testing the code for calculating a side length will be a fruitful next step, but 
without success. T then attempts to make the students reflect on generalizing 
the algorithm, making it applicable to polygons. S2 now demonstrates to have 
grasped the general idea: 

S2: When we are using a loop, all that is needed is adding some numbers 
to the array. Almost. 

The students followingly describe the structure of an algorithm, but it is 
vague in detail. T again attempts to discuss the idea of completing and testing 
the first subtask, but eventually is required to suggest the solution: 

T: (…) in the first version of the program, would you try to include 
everything, or would you construct it bit by bit? 

S2: Eh, I would have tried to include all at one time. And then checked if 
it worked or not. And then, after that, if it works, I would have tried to find 
points where it could be improved. 

T: Yes. Do you think a good strategy would be to calculate the length of 
a single side and make that work first, and then extend it to the triangle? 

S2: Yes, that would have been a good idea. 
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Next S2 suggests starting to write program code, and shares screen with 
the MATLAB programming environment. Apparently, the students are more 
comfortable with proceeding straight to the programming phase than 
theoretically elaborating on an algorithm. 

On instructions from T S2 creates an array with test coordinates based on 
the triangle in figure 3, and with some assistance creates a syntactically correct 
MATLAB function skeleton, but then work stops. T reminds of the suggestion 
made earlier of not doing everything at once. Though, still after this allusion 
on how to simplify the algorithm the students seem unable to perform the 
transition between algorithm and program code. T suggests calculating the 
change in x-coordinate between corner one and two. S2 then types "xdiff = x2 
- x1". This is correct in an MT-context, but unrelated to the actual MATLAB-
variables. S3 spots the difficulty, and is able to, assisted by T, instruct S2 on 
correcting the problem. The students are however unable to implement the 
Pythagorean theorem as MATLAB-code without strong hints from T. 

The code is now tested, and MATLAB correctly outputs 𝑠ଵ as in figure 3. 
When T suggests testing with corners 2 and 3, S2 is able to replace the array 
indexes and test again. The test is successful. 

Now the subtask of calculating the length of a triangle side is finished, and 
an entire cycle in figure 1 is completed. MT has been used to determine that 
Pythagoras may be used to calculate the distance between two corners, CT has 
been used in producing an algorithm, the algorithm has been implemented in 
MATLAB-code, the code has been tested, and the output has been verified to 
make sense mathematically. 

T now wants the students to engage in the second subtask. Work however 
does not progress, even when T reminds of the consensus on using a loop. T 
has to provide detailed instructions on how to merge the distance formula with 
the loop. But then S3 realizes that the loop variable, 𝑛, must be used to identify 
the triangle corners, and S1 employs MT to establish that if 𝑛 is a corner 
number, the adjacent corner number is 𝑛 + 1. 

S3 now identifies the border value problem that will appear when 𝑛 = 3. 
T postpones the problem by suggesting setting the upper loop boundary to 𝑛 =
2, temporarily. 

To make the students attack the problem of making the algorithm 
accumulate side lengths, strong engagement from T is required. But finally, 
S3 is able to coach S2 on how to implement the appropriate mechanism. The 
program is tested, and correctly outputs 𝑠ଵ + 𝑠ଶ as in figure 3. 

T now instructs S2 to set the upper loop boundary back to 𝑛 = 3. A test is 
run, and MATLAB responds with an index-out-of-bounds error message. 

S1 now employs MT and suggests modulo calculations. T acknowledges 
the idea but suggests using CT and adding a fourth coordinate pair equal to 
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corner 1. The program is tested, and correctly outputs the circumference of the 
triangle, 𝑠ଵ + 𝑠ଶ + 𝑠ଷ, as in figure 3. 

T now describes how the algorithm may be extended to work on an 
arbitrary polygon, without inviting the student to reflect on it. 

When T ends the session by asking the students to sum up the steps taken 
in creating the final MATLAB program, there is no response. They thus seem 
unable to articulate the process of using MT and CT in problem solving. But 
when T outlines the steps undertaken, the students agree to that the experience 
will be profitable when engaging in similar tasks later. 

4.2 Group 2 

S6 has some prior knowledge of the task and starts by suggesting the 
Pythagorean theorem as a method for calculating the length of the triangle 
sides. T then suggests starting with a single side and making that work, thus 
doing a decomposition in subtasks and suggesting a workflow, instead of 
leaving that to the students. 

S6 now proposes arrays as a suitable data structure for the corner 
coordinates. 

There is some confusion on how to provide test data, so T asks if 
somebody can start MATLAB. By doing this, T goes straight to the 
programming phase, without further elaboration on MT and CT. 

S4 starts MATLAB, sharing screen. When T invites the students to suggest 
test data, S6 gives an odd comment: 

S6: (…) We probably want some coordinates that are equal, some that are 
negative, some that are positive. 

One may suspect that S6 here mechanically refers to a test strategy 
appropriate in the context of previous exercises, without abstracting, 
generalizing, and adapting the strategy to the current context. 

T now suggests creating test data i MATLAB, based on figure 3. S6 
followingly takes charge and instructs S4 on how to create a data structure in 
the form of MATLAB arrays. 

With the test data ready, T suggests creating a MATLAB-function for 
calculating a side length, but there is no response. The students thus seem 
unable to make the transition from the MT idea of the Pythagorean theorem 
to actual program code. However, on hints from T, S6 again takes charge and 
instructs S4 on writing a function header with the coordinate arrays as 
arguments. 

The function body is however empty, the students still have not been able 
to produce neither algorithm nor program code. 

T then reverts to MT and demonstrates on figure 2 how a side length may 
be calculated from the corner coordinates. But the student's first attempt to 
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provide a function body reveals that they confuse the two subtasks. T reminds 
that the current subtask is to calculate the length of a single side. 

S6 now is able to instruct S4 on what to type, with very little intervention 
from T. The result is correct, apart from that the calculated length is not 
assigned to the function's return variable. This is a flaw in implementing the 
algorithm as program code, which S4 is able to correct when T draws attention 
to MATLAB warnings. 

The program is tested, and correctly outputs the length of 𝑠ଵ as in figure 
3. T then asks the students what the next step should be. S6 replies: 

S6: We should probably do that for the rest of … find an expression 
then… probably a loop doing this for the remaining sides. 

T: Yes, why do you suggest a loop? 
S6: Because then you can take from point one to point three, or side one 

to side three. 
T: Yes. 
S6: A for-loop then since you know the fixed values and the fixed steps 

between. That will execute the operation three times, so that you do not have 
to write the operation for the three different points. 

Though the students initially were unable to suggest loop as a control flow 
structure, S6 is now able to describe it in detail. Thus, after producing some 
program code, S6 reverts to CT and is able to combine the subtasks of the 
algorithm. 

With only a few hints from T S6 instructs S4 on how to program the loop. 
A transition to MT/CT is then required to employ the loop variable, 𝑛, in 
indexing the corners. When T suggests replacing index 2 with 𝑛 + 1, S4 is 
able to replace all four indexes correctly uninstructed. 
The code is tested, and MATLAB outputs an array-out-of-bounds message. 
S6 immediately identifies the problem as 𝑛 + 1 = 4 when 𝑛 = 3, but suggests 
correcting it by setting 𝑛 = 2 as upper loop bound, apparently unaware that 
this will cause omission of the third triangle side. T however allows the 
correction. 

MATLAB now outputs the length of 𝑠ଶ, as in figure 3. T then demonstrates 
on figure 3 that 𝑠ଵ and 𝑠ଶ are not added, hinting on a missing mechanism that 
has been used in previous exercises. S6 takes the point and is able to use CT 
to incorporate addition in the loop. 

MATLAB now outputs the length of 𝑠ଵ + 𝑠ଶ, as in figure 3. To include 𝑠ଷ, 
S6 first reverts to CT and suggests adding an extra instance of the distance 
formula. But when T relates the indexes to the triangle sides, S6 employs MT 
and suggests using a modulus calculation. T accepts this as a good strategy 
but suggests adding a corner 4 equal to corner 1, as a quick fix. MATLAB 
now outputs the correct circumference of the triangle, as in figure 3. 
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When summing up, S6 is able to describe how to generalize the algorithm 
to work on an arbitrary polygon, in the form of MATLAB mechanisms. S6 is 
also able to articulate the steps undertaken in the completed task but is not 
quite able to articulate a test strategy. 

4.3 Group 3 

When the group initially is asked to reflect on how to attack the task, S7 
employs MT and CT in a first thought about systematically calculating and 
adding the distances between adjacent corners. The thought is somewhat 
unclear, however, as S7 refers to distances as absolute values. T comments on 
that S7 has mentioned two subtasks, but none of the students seem able to use 
CT in a systematic way to identify the tasks, even after hints. But when T 
identifies them, S7 correctly identifies calculating the length of one side as the 
task to start with. 

The students are however unable to suggest a method for calculating a 
length, even when T refers to previous exercises. S7 even naively suggest 
calculating the length of a hypothenuse by adding the lengths of the remaining 
triangle sides. A 3-minute demonstration from T on figure 2 is required until 
S9 suggests using Pythagoras. 

T now proposes creating an algorithm and a program for testing this idea. 
S9 starts sharing screen with MATLAB. But, even after strong hints from T, 
the students are unable to suggest neither test strategy nor a suitable data 
structure for the coordinates. To simplify, T suggests creating single variable 
test coordinates for corner 1 and 2. Dictation is however required for S9 to 
create the variables in MATLAB code. 

S9 sketches a MATLAB function but without a parameter list. When T 
suggests calculating the change in x-value, S9 employs the symbols x1 and 
x2, which are nonexistent in the function. T claims that there is a problem, but 
nobody is able to identify it. When T explains that x1 and x2 must be provided 
explicitly, S9 however creates the parameter list required. 

S9 is now able to translate the Pythagorean theorem into correct MATLAB 
code. 

A test is run, but the program gives no output since the function's return 
variable is not assigned a value. When T draws the attention to MATLAB 
warnings, S9 however detects and corrects the error. 

A new test outputs the correct length of 𝑠ଵ as in figure 3. 
T followingly invites the students to consider a more suitable data structure 
for the coordinates. S7 and S9 realizes there will be a problem "to get all the 
coordinates in" but have no further suggestions. When T proposes arrays, S9 
is however able to, with hints from T, to implement the necessary changes in 
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the MATLAB-code. S9 now raises a question of the order of the two corners 
used to calculate side length: 

S9: Is it number two minus number one, or what? 
T: Does it really matter? Does anybody have an opinion on that? What 

would have happened if we swapped 1 and 2? 
S7: We would have gotten another number. 
S9: It would be negative. 
T: Yes. We would have gotten opposite sign. 
S9: Minus two. Yes. 
The discussion continues, but the students are unable to employ MT to 

determine that the order of the endpoints is unimportant when calculating the 
length of a line. 

Work stops. On request from T on a natural next step, S7 suggests adding 
the lengths, but there is no further progress. Even when T asks the students to 
reflect on mechanisms used in previous exercises, nobody realizes the need 
for a loop. T is required to give detailed instructions. 

S9 seems to understand that the loop variable will have to be used in 
identifying the corners, and after a hint from T is able to use MT and CT to 
make the adaptations required. 

The program code is tested, and the boundary value problem manifests 
itself. The students are however unable to suggest neither MT nor CT solution 
to the problem. T then instructs on adding a corner 4 equal to corner 1 to the 
coordinate array. 

Now a test run outputs 𝑠ଷ as in figure 3. Referring to the figure, T explains 
what the error is, hinting that the same kind of problem has been solved in 
previous exercises. S9 realizes that a mechanism for adding the side lengths is 
required but is unable to implement it. S8 suggests employing a variable 
named "sum-of-series". In the context of many previous exercises this has 
been a sensible name, but it is inappropriate in the current context. S8 thus 
demonstrates a lack of ability to abstract, generalize and adapt a mechanism 
from previous experiences. 

Eventually T has to instruct S9 on how to implement the mechanism 
required. The program is tested and outputs the correct circumference of the 
triangle as in figure 3. 

Ultimately T asks the students how they would have attacked the problem 
on their own. S9 would have thought about it a bit, then started to program. 
When asked about taking it all on at once, says to go by it part by part, but is 
unable to identify the parts. When T asks how the solution may be generalized 
to work on arbitrary polygons, S9 is able to provide an adequate answer. This 
demonstrates a certain ability to used CT in solving a task, but the ability has 
major flaws. 
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5. DISCUSSION 

The main findings of this study are twofold. Firstly, the introduction of CT to 
students at the undergraduate level presents many challenges for teachers 
committed to improving students’ MT. Secondly, the mathematical task 
presented to the students to develop their MT and CT skills was challenging 
for novice learners for many reasons, considering their minimum prior 
knowledge of CT and programming, their varied mathematical knowledge 
levels, and mathematical problem-solving skills. The findings report on the 
interactions and transitions that emerged between MT, CT, and programming 
that were observed during the mathematical problem-solving process. These 
are summarized as follows: 

Mathematical problem, MT - CT interactions: Most students struggled 
with the initial process of understanding what mathematical problem the task 
consisted of, and as a result were unable to use MT and CT to model and 
decompose the task without the teacher’s guidance. It appears from the 
students’ interviews that the lack of MT hindered them in making sense of the 
task and develop a problem-solving strategy translatable into an algorithm. 
The transition between MT and CT was also challenging, even though these 
thinking processes are based on logical reasoning. As a result, the interaction 
between MT and CT was not straightforward and at times very challenging 
and incoherent. Most students were unable to identify the problem until the 
teacher pointed it out. Guided by the teacher, some students were able to 
translate the identified mathematical expression into correct MATLAB-code, 
but without the mediation of CT. 

Transition algorithm – code: As a consequence of low MT, most 
students failed to use CT to develop an algorithm step-by-step, or presented a 
solution only as program code without an explicit algorithmic description and 
associated steps to be taken in obtaining a solution. Some students were able 
to use CT and describe an algorithm and program code. However, they often 
switched rapidly to the programming phase, without further elaboration on 
creating a coherent algorithm. The transition between algorithm and 
MATLAB-code was thus challenging as the students struggled with 
implementing the algorithm in the form of MATLAB code. 

CT – algorithm - decomposition: When students managed to develop 
some sort of algorithm, they were often unable to reduce the complexity or 
simplify the algorithm and re-construct it step-by-step, or decompose the task 
in smaller subtasks. Likewise, the direct transition from MT to code without 
the mediation of CT did not work well, e.g., the translation of the 
mathematical distance formula into MATLAB-code. 

Program code: When it comes to programming, many students were able 
to understand the program after it had been developed under the guidance of 
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the teacher. However, extending the program based on extensions to the 
algorithm proved difficult. For example, once the need for a loop was 
established, the students struggled with merging the previously coded distance 
formula with the loop. It is worth noting, however, that in one case a student, 
initially unable to see the need for a loop, was able to revert to CT and describe 
the proper mechanism after writing some preliminary program code. 

Abstraction – Generalization: The results also show that generalization 
was difficult, as the students demonstrated low ability to abstract, generalize 
and re-use programming concepts known from previous exercises in new 
contexts. For instance, the students required strong guidance to see the need 
for a loop, and in some cases suggested reusing mechanisms unmodified from 
previous exercises. Likewise, few students were able to generalize the 
algorithm or extend the program to work on arbitrary polygons. 

Code evaluation: Finally, students struggled with code validation and 
testing. On request from the teacher, most students initially were incapable of 
suggesting a test strategy, and ultimately were unable to describe the strategy 
actually employed during the group work. 

6. IMPLICATIONS 

Four implications can be drawn from this study. Firstly, the results indicate 
that a requirement for engaging in mathematical problem solving through CT 
and programming is a solid foundation in both MT and CT, as well as an 
understanding of the interaction between the two. 

Secondly, to make MT interact better with CT, a learning environment 
around first-year undergraduate mathematics courses should be well designed 
to ensure a smooth integration of CT and MT. Moreover, the learning 
environment should promote explicit CT processes that expose students to 
algorithmic thinking, decomposition, generalization, abstract reasoning, 
evaluation, and associated with the four “cornerstones” of CT (Weintrop et al. 
2016). This is the key in deciding how to introduce CT at the undergraduate 
level and assist students in learning to think computationally. A learning 
environment where students engage in CT associated with appropriate 
learning activities, varied and intrinsically motivating tasks that are suited to 
their mathematical knowledge level may lead to greater involvement and 
learning progression. Such a learning environment is potentially powerful in 
providing more opportunities for students to develop their own understanding 
of CT and programming concepts. In other words, it lays the ground for 
learning autonomy. However, student autonomy cannot be fully expected for 
novices without good knowledge background in MT and familiarities with CT 
and programming. 
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Thirdly, as this study shows, the role of a knowledgeable teacher in MT 
and CT is still important to assist students in designing algorithms and 
implementing computational solutions for mathematical problem solving. In 
this regard, there will be a need for professional development for teachers that 
enhances not only their understanding of CT, but also about the ways in which 
CT interacts with MT. 

A final implication of this research is the need to reconsider the 
interactions between MT, CT, and programming because the findings show 
more overlaps than what was proposed in the model in figure 1. Indeed, a more 
in-depth examination of the interactions between CT and MT is necessary to 
highlight their communalities and potential differences and suggest some 
modifications to the proposed model. 

7. LIMITATIONS AND FURTHER WORK 

The low number of participants (N=9) limits how much the results can be 
generalized. Hence, a larger number of participants from several classes would 
have been more appropriate to achieve higher generalization. Nevertheless, 
the data collection and analysis method used in this study to generate a large 
and in-depth set of qualitative data, seems to be justified for addressing the 
research question and issues on CT, MT, and programming critically. Thus, 
even though this study is limited to task-based interviews of three groups of 
three students each, the findings help to advance current knowledge in the 
field both from a theoretical and practical point of view. 

Future work will include a study exploring the implications of a learning 
environment with explicit focus on CT and MT in a larger number of 
participants to ensure more reliability and validity of the results. 
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