
MATHEMATICAL PROBLEM-SOLVING BY MEANS OF 
COMPUTATIONAL THINKING AND PROGRAMMING:  

A USE-MODIFY-CREATE APPROACH  

Nils-Kristian Hansen  
University of Agder, Institute of Mathematical Sciences,  

Kristiansand, Norway 
 

Said Hadjerrouit 
University of Agder, Institute of Mathematical Sciences,  

Kristiansand, Norway 

ABSTRACT 

This paper aims at using a Use-Modify-Create approach to explore students’ mathematical problem solving by means of 
computational thinking (CT) and programming activities. The data collection method is participant observation, in which 
the researcher also has the role as teacher, guiding the group activities. In our study, two groups of students at the 
undergraduate level solving a mathematical task. The main finding of the study shows that the progression through the 
Use-Modify-Create continuum did not work as expected and that the connections between mathematical thinking, 
computational thinking, and programming proved difficult for the students. Conclusions so far are drawn from the study to 
promote mathematical problem solving by means of computational thinking and programming in a Use-Modify-Create 
context. 
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1. INTRODUCTION 

The existing body of literature on programming in mathematics education research has primarily been informed 
more by constructionist and individual perspectives than by conceptual and pedagogical approaches to 
mathematical problem-solving such as Use-Modify-Create (UMC) or similar frameworks for supporting 
progression in learning programming. Moreover, empirical data collected in our previous research (Hansen & 
Hadjerrouit, 2023; Hadjerrouit & Hansen, 2022) do not sufficiently account for the connectedness of 
mathematical thinking (MT), computational thinking (CT), and programming. Given this background, we 
argue that a pedagogical approach supporting learning progression may help students to develop an enhanced 
understanding of mathematical problem solving by means of CT and programming. The objective of the study 
is to use a Use-Modify-Create (UMC) approach to analyze undergraduate students’ ability to solve 
mathematical problems by means of CT and programming.  

The research question of this study is as follows: How do students use, modify, and create computer 
programs to solve mathematical problems by means of computational thinking and programming activities? 

The article is structured as follows. Firstly, the theoretical background is outlined. Secondly, the UMC 
approach, context of the study, participants, and methods are described. Then, the results are reported and 
analyzed, followed by a discussion. Finally, conclusions, limitations, and future work conclude the article. 



2. THEORETICAL BACKGROUND 

We start with a brief overview of the existing research literature on the integration of CT and programming 
activities into undergraduate mathematics education. The purpose is to uncover and delineate the use of CT 
and programming to support problem solving in mathematics education research during the last few years. 

2.1 Brief overview of the literature 

The recent trend of integrating programming into the mathematics subject at the undergraduate level suggests 
the importance of CT as a core notion beyond programming in the context of mathematics education. 

CT is more about thinking than computer programming (Li, Schoenfeld, & diSessa, 2020; Misfeldt & 
Ejsing-Duun, 2017). More specifically, it represents a “universally applicable attitude and skill set everyone, 
not just computer scientists, (…)” (Wing 2006, p. 33). More specifically, CT is a fundamental skill and shares 
several communalities with mathematical thinking (MT), e.g., problem solving and logical reasoning. MT 
involves the application of mathematical skills to solve mathematical problems. CT is “an approach to solving 
problems in a way that can be implemented using a computer” and goes beyond computer programming (Barr 
& Stephenson, 2011). Moreover, it is assumed that CT improves both logical and reasoning skills in 
mathematics education (Martínez-García, 2021). The close connection between MT and CT provides good 
opportunities for mathematical problem-solving. 

Likewise, programming is closely related to CT, but traditionally, programming in educational settings 
required producing algorithms from scratch without the mediation of CT (Kaufmann & Stenseth, 2020). 
Recently, it is recommended to pass through CT to be able to design algorithms. Being able to programs and 
test program codes is the result of being able to think computationally (Li et al., 2020; Shute, Sun, & Asbell-
Clarke, 2017; Wing 2006, Wing 2008). Clearly, programming alone without a clear connection to CT may not 
be sufficient to support students in mathematical problem solving. Thus, CT skills are critical for building 
efficient algorithms for mathematical problem-solving rather than trial-and-error and getting the program to 
run (Topallia & Cagiltay, 2018). In other words, CT requires students to be engaged in a problem-solving 
process until an appropriate algorithm is found that can be translated into a computer program. 

Moreover, our previous research shows that integrating CT and programming with mathematics is a 
challenging task, and it has scarcely been explored in undergraduate education (Hadjerrouit & Hansen, 2022; 
Hansen & Hadjerrouit, 2023). The main findings of this research are twofold. Firstly, the introduction of CT 
at the undergraduate level presents many challenges both for students and teachers. Secondly, the mathematical 
tasks presented were challenging for novice students due to their lack of prior knowledge of CT and 
programming, varied mathematical problem-solving skills, and the difficulty to connect MT, CT, and 
programming in an effective way. 

Hence, efforts must be put on a more encompassing view of the relationship between CT, MT, and 
programming. But still, a great challenge remains to make CT consequential and accessible to all students. As 
a result, it becomes important to broaden the view of CT as a fundamental skill and as a model of thinking that 
is important for all students. Our hypothesis is that developing and using pedagogical approaches for 
mathematical problem-solving by means of CT and programming may open new opportunities. At the same 
time, new challenges may become visible, and each of these challenges will require tremendous effort. The 
same is the case for specifying CT competencies that serve as a foundation for mathematical problem-solving. 

2.2 MT, CT, and programming and their interplays 

MT, CT, and programming have a lot of communalities (Weintrop, 2016; Wan-Rou Wu & Kai-Lin Yang, 
2022). Firstly, MT consists of solving mathematical problems, (e.g., algebraic equations or functions), and 
justification for solutions (Shute, Sun & Asbell-Clarke, 2017, p. 145). Secondly, Wing (2008, 2014) pointed 
out that the main commonality between CT and mathematical thinking is problem-solving and a structured 
step-by-step construction process. Thirdly, CT and programming constructs such as variables and flow 
statements (if-then-else, for, while-until, repeat, etc.) are closely connected to mathematical thinking (Lie, 
Hauge, & Meaney, 2017). The close connection and interplay between MT and CT might provide opportunities 
for mathematical problem-solving (Figure 1). As one can see the approach is not linear, moving from MT, to 
CT to programming, instead transitions back are possible to make sense of algorithm and program code. 



 

Figure 1: MT, CT, and programming and their interplay (Hadjerrouit & Hansen, 2022) 

2.3 Use-Modify-Create (UMC) 

The Use-Modify-Create (UMC) approach is a framework for supporting progression in learning programming. 
(Franklin, 2022; Houchins, 2021; Lee et al., 2011). Learners move along a continuum from where they first 
use programs made by someone else, e.g., teachers. Then, they modify programs developed by other people 
(e.g., teachers) so that the modified code becomes “theirs”. Finally, in the third step, they create their own 
programs (Figure 2).  
 

  

Figure 2: Use-Modify-Create model (Lee et al., 2011) 

We think that the UMC approach offers a helpful progression for developing such skills over time. Its greatest 
advantage is in illustrating the benefits arising from engaging students with progressively more complex tasks 
and giving them increasing ownership of their learning (Lee et al., 2011). In the Use-phase students are 
consumers of someone else’s creation. For example, testing, debugging, or interpreting a program. In the 
Modify-phase they begin to modify the program with increasing levels of sophistication, e.g., changing the 
value of a variable or modifying a loop. In the Create-phase, the students may want to change the behavior of 
the program in a way that entails developing new pieces of code, through a series of tests, analyses, iterative 
refinements, and attempts to validate the program against a mathematical problem, which becomes one’s own. 
Within this “Create” phase, key aspects of CT come into play, connecting to MT and programming. Clearly, 
this phase necessitates MT and CT to a higher degree in comparison with previous phases. Moving through 
this progression, it is important to maintain a level of challenge difficulty that supports growth while limiting 
frustration and anxiety, considering that the approach is not fully linear, moving from Use to Modify to Create, 
instead transitions back and forth (Lee et al. 2021). 

3. THE STUDY 

Grounded on a qualitative research design this work uses a case study to collect data by observing the work of 
2 groups of students in a first-year undergraduate course on programming with applications in industrial 
mathematics. UMC is used as an analytical framework to evaluate students’ activities.  



3.1. Data Collection Method and Participants 

The data collection method is participant observation based on qualitative research, with a slight modification. 
The researcher had the role as a teacher (T), guiding the students when they got stuck. The work was performed 
in one group of three students (S1, S2, and S3) and one group of four (S4, S5, S6, and S7), using the video 
conferencing tool Zoom with screen sharing. In the Use-phase the teacher shared the programming 
environment, during the Modify- and Create-phases a student undertook this responsibility. All students had 
video and sound turned on, so that they were able to see and hear each other as well as to observe the program 
code. The participants were volunteers from a class of 86 students, having varied background in mathematics, 
but were about to complete an introductory course in programming. This course introduced basic Python 
constructs like variables, loops, branches, functions, and classes, but also dealt with structured programming 
and CT. 

3.2. Use-Modify-Create tasks. 

The Use-Modify-Create approach is used to progressively introduce students to new programming concepts 
through three activity phases. In the Use-phase they start in a programming context, trying to abstract a 
mathematical concept from a Python-function, (figure 3). In the subsequent Modify- and Create-phases, 
however, they start in an MT context, attempting to solve a mathematical challenge by programming. 
 

 

Figure 3. Python code used for the Use-phase. 

Use-phase: In the Use-phase the students were presented with the Python-function in figure 3 and asked to 
describe what it performed, without testing it. The function was named "x" to avoid semantical interpretation. 

In an MT context the function may be described as checking if its argument is a prime number. In a CT 
context it may by described as checking the parameter, a, for divisibility by all integers, n, in the range from 
a−1 down to, but not including, 1. The divisibility test is performed by examining if the remainder of a divided 
by n is zero. If so, a is not a prime, and the function returns True. If a remainder of zero never occurs, a is a 
prime, and the function returns False. 

The students were also asked to reflect on if reversing the order of the integers, n, i.e., testing from 2 up to 
a−1, is correct, and if the one method is preferable over the other. In a CT context the two methods are identical, 
but in an MT context checking from 2 and up is preferable, as the probability of detecting divisibility is 
significantly larger for small numbers. 

Modify-phase: Another way of stating that a is divisible by n is to say that n is a factor in a. In the Modify-
phase the students were asked to modify the function as to count all factors in the parameter, a. In a 
programming context this involves introducing an accumulator variable, updating it for each factor found, and 
ultimately returning its value. MT considerations are that the numbers 1 and a also should be considered factors, 
and that for each positive factor a corresponding negative factor exists. One algorithmic solution to counting 
negative factors is extending the range of n to [−a, a]. This, however, requires excluding n = 0 from the 
divisibility test. Another solution is to keep the range as [1, a] and add 2 to the accumulator variable for each 
factor found. 

Create-phase: In the Create phase the students were asked to write a Python-function returning a list of all 
factors in the parameter a. It may be noted that the programming pattern for this closely resembles the pattern 
in the Use-phase, so modifying the existing code may be a better choice than writing it from scratch. The 
modifications required are that a composite variable like a list must be used instead of an accumulator variable, 
and that each factor found must be concatenated to that variable. 



3.3. Data analysis 

The analysis of the results seeks indications of students’ mathematical problem-solving by means CT and MT 
in an UMC context. It uses a deductive-inductive approach based on the interplay between the theoretical basis 
of the study and the empirical data (Patton, 2002). Specific questions are addressed when analyzing the data 
such as: To what extent do students successfully complete the UMC activities? To what extent does UMC 
support student learning progression? To what degree do students modify the programs? To what extent do 
students focus on mathematical problem-solving? To what extent do they benefit from CT to develop an 
algorithm in the Create-phase? To what degree do they use MT and CT to create a program? 

4. RESULTS 

4.1 Group 1 

Use-phase: T presents the Python function, asking the students to take some time to reflect on what it does. 
The students start in a programming context, engaging in a line-by-line discussion, but are unable to give an 
overall MT or CT description of the code. Even after T has given an example, a strong hint is required for them 
to switch to an MT-context: 

T: So, we agree on that if a is not divisible by any of the smaller numbers, the function returns False. Do 
you follow me on that? 
S2: Yes. 
T: Can we say that in another way? What property does a have, then? Can you find a mathematical 
concept that describes … 
S1: A prime number. 

T then demonstrates that the function returns True on 11 as an argument and False on 10, and eventually S1 
can describe the function in an MT-context: 

S1: The function checks if a number is a prime. 
T now reverses the range to count upwards from 2 and asks if the two methods are equal. S1 responds in a CT-
context and concludes that they are. S3 however responds in an MT-context concluding that upwards from 2 
is more efficient because one more frequently will find a multiple of the lowest numbers. 

Modify-phase: S2 copies the code and shares the programming environment. T requires the students to 
modify the code so that it counts the factors in the parameter a.  

The students do not engage in any CT or MT strategy discussion but goes straight to programming. S1 
initially instructs S2 on what to write, but eventually S3 takes over the role as instructor. Together they write 
code that is correct. A test is run, and S3 first claims that the result is incorrect, but when T insists on it being 
correct, S3 realizes that the function counts all factors, not only prime factors: 

S3: Yes. Now you get alle the numbers that can be factors, you do not get the numbers in a prime 
factorization. 

On a question from T on whether the numbers 1 and a also should be considered factors in the number a, the 
students are unable to give an answer. But when T states that this is the case, S2 and S3 immediately rewrite 
the code so that 1 and a are included in the divisibility test. 

When T asks for negative factors to be included in the count, S3 instantly suggests ranging from −a to a, 
and S2 modifies the code accordingly. They do, however, not employ MT to foresee that the code will produce 
a division by zero-error. But when this error occurs, they immediately realize what the problem is: 

T: Well, what did go wrong? 
S3: Modulo by zero. 
S1/3: Yes. 
S3: You cannot divide by zero. 
S2: No. 

However, the students do not find a simple programming solution to this. The suggestions they provide are 
awkward in a CT setting, involving code duplications. T needs to guide their work in detail. 



In contrast, when T asks for another, mathematical way to count the negative factors, S1 immediately 
employs MT, stating that one may count two factors at a time, as there is an equal number of negative and 
positive factors. S2 then modifies the code accordingly. 

Create-phase: T now asks for a function returning all the factors in a. The students choose to modify the 
existing function. 

S3 sees the need for a data structure to collect the factors and suggests replacing the accumulator variable 
with a list. Furthermore, S3 appears able to use CT to model the required algorithm mentally, giving S2 detailed 
coding instructions. S1 spots the problem that only positive factors are included and suggest expanding the 
range to [−a, a], excluding zero, as done in the Modify-phase. A final test does not reveal any errors. 

4.2 Group 2 

Use-phase: T presents the Python function, asking the students to take some time to reflect on what it does. 
After a while S7 describes the workings of the details in the program and concludes that it does a divisibility 
check. S6 is then able to see this in an MT context and conclude that the function is a primality checker. Then 
S7 is also able to see the expression a % n == 0 in an MT context and conclude that it is about modulus in 
integer division. 

T now reverses the range to count upwards from 2 and asks if the two methods are equal. S7 reflects both 
in a programming context and an MT context, concluding that the two methods algorithmically are the same, 
but that counting upwards is better, as small numbers are more prone to be factors. 

Modify-phase: S6 copies the code and shares the programming environment. T requires the students to 
modify the code so that it counts the factors in the parameter a. Both S6 and S7 immediately sees the need for 
an accumulator variable. Followingly, however, they struggle with creating the counting mechanism, making 
several erroneous suggestions. T needs to remind them that the task is about counting factors. S4 then 
reintroduces the idea of an accumulator variable. The students are however unable to integrate the accumulator 
variable in the code, discussing if it should be placed inside or outside of the loop, apparently unaware of the 
algorithmic implications of their choice. Ultimately, they make the correct decision, but based only on what 
they have seen in previous examples. The discussion then continues along the same lines, again demonstrating 
the lack of CT. When advised by T, S7 eventually reaches the correct conclusion, though unable to phrase it 
properly: 

S6: Does it matter if it is in the if-loop or the for-loop, T? 
T: Yes, it does matter. 
S7: It think the for-loop should be allowed to complete before we print out how many. 

A test run counts four factors in the number 12. In an MT reflection S4 states that these factors are 2, 3, 4 and 
6, but S6 objects that the number 12 itself is not counted. T argues that 1 and the number itself should also be 
considered factors and prompts the students to modify the code accordingly. S6 then has no difficulty in doing 
the proper modifications. 

T now asks if negative numbers can be considered factors, and S6 and S7 hesitantly agrees to yes. T suggest 
having the program counting them also. S6 wants to expand the range from −a to a, but S7 employs MT and 
suggests counting two factors at the time instead, pointing out that this also will avoid a division by zero. S6 
writes the correct code. 

Create-phase: T asks for a function returning all the factors in a. The students choose to further modify the 
existing function. S6 comments that they already have touched on the thought and invites S5 and S4 to give 
input. S4 states the need for a list, and S6 replaces the accumulator variable. S4 replies confirmative to S5s 
question on if the same loop-range can be used, but S7 realizes that this will exclude negative numbers. S6s 
algorithmic suggestion for solving the problem is however awkward, involving cloning the list. S6 suggests 
extending the range to [−a, a] but notes the MT challenge of zero division. Eventually S4 produces the idea of 
appending −n to the list along with n. S6 modifies the code and runs a test that does not reveal errors. 

Next T asks how to get the factors in ascending order. S7 has a correct CT suggestion of adding a sort, but 
employing the idea in program code proves challenging. Eventually the students come up with a solution, 
sound both in an MT and a CT context, but involving superfluous code that can be eliminated by using an 
extended range and testing for zero divisors. However, the students seem unable to write the proper code. S6 
and S7 bring forward a range of suggestions, but they are either incorrect or exceedingly complex. T eventually 
has to dictate the solution. 



5. DISCUSSION  

The research question “How do students use, modify, and create computer programs to solve mathematical 
problems by means of computational thinking and programming activities?” focuses on the structured 
activities underlying UMC to ensure a progression in learning associated with an exploration that allows for 
drawing on the interactions between MT, CT, and programming, and the extent to which the students benefit 
from the interactions. We draw on the deductive-inductive approach to reflect on the results achieved so far. A 
summary of our reflections on the groups’ work is given below, organized according to the UMC approach. 

Use-phase: Both groups managed to do a syntactical analysis of the program, but only group 2 was able to 
use MT and CT to abstract and describe the functionality on a general level, and to reflect on code details in a 
mathematical context. Once the functionality was established however, both groups were able to deduct the 
mathematical implications of a modification to the program. 

Modify-phase: Neither group attacked the task in a structured manner, being unable to draw on their 
experience from the Use-phase. They did not engage in any CT or MT strategy discussion but went straight to 
programming. Group 1 was able to do minor modifications, but none involving major structural changes. Group 
2, in contrast to their success in Use-phase, now were unable to make any connection between the mathematical 
context and the code. They went about the coding in a trial-and-error fashion, apparently without understanding 
the algorithmic implications of their trials. Substantial assistance from T was required. 

Create-phase: Discovering the similarities between this task and the Modify-task, both groups chose to 
adapt the existing code instead of writing new from scratch. With the major mechanism required already 
established in the Modify-phase, group 1 was able do the necessary programming without aid. As for group 2, 
their trial-and-error approach again impeded their work, and substantial assistance from T was required. 

The main finding of this study is that connections between MT, CT and programming proved difficult for 
the students (see fig. 1). The transition from programming to mathematical idea in the Use-phase however 
appeared to run smoother than going the other way, solving a mathematical problem with program code in the 
Modify and Create phase. In the latter phases the students to a very little degree were able to profit from their 
experience in the Use-phase. Also, even though, as stated by Lie et al. (2017), there is a close connection 
between CT and programming constructs, the students almost took no advantage of this. This may be an 
indication of that the connection is not obvious to the students, when not pointed out and exercised. 

Based on this background, the challenges that need be overcome are as follows. Firstly, while the transition 
from programming to mathematical notion in the Use-phase worked relatively well, the results show that 
modifying a given program, and create a new one for solving mathematical problems are more challenging 
than originally expected. Consequently, the students were thinking at levels not explicitly related to the various 
phases of the UMC learning progression.  

Secondly, referring to figure1, it appears that the lack of CT in the UMC continuum creates a gap in the 
flow between MT and programming. This may explain some of the major difficulties occurring when 
modifications to the program structure were required. However, instructor guided programming seemed to aid 
bridging the gap. 

Thirdly, in accordance with the research literature (Hadjerrouit & Hansen, 2022; Hansen & Hadjerrouit, 
2023; Wan-Rou Wu & Kai-Lin Yang, 2022; Martínez-García, 2021), the study shows the crucial role of CT as 
a fundamental skill and as a model of thinking relevant to mathematical problem-solving. To make effective 
use of CT in the Create-phase in particular, students should be able to analyze and decompose the mathematical 
task into smaller sub-tasks by means of CT, and then develop an algorithm before programming. In other 
words, we expect a progression that encourage students to work creativity and exploratory (Franklin, 2022; 
Romero et al, 2017). 

Finally, in line with our previous research (Hansen & Hadjerrouit, 2023; Hadjerrouit & Hansen, 2022), this 
study shows again that the role of the instructor is still important to assist students in their progression through 
the entire UMC continuum, in particular in the Create-phase.  

6. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK 

The present study is an attempt to contribute towards the advancement of the potential value of CT and 
programming at the undergraduate level when students engage in mathematical problem-solving, while 



uncovering both limitations and challenges encountered by the students when trying to connect MT, CT, and 
programming. The aim is to use a Use-Modify-Create approach and see if this contributes to a better 
understanding of mathematical problem-solving. 

Limitations of this work include potential population bias and our implementation of the UMC method. 
Firstly, the number of participating students is low for a generalization. Also, as the participants were 
volunteers, one may assume that they were higher performing students than average. Secondly, a flaw in the 
design of the tasks associated with the UMC approach was that the Create-task was so similar to the Modify-
task that it in reality consisted of two Modify-tasks. In addition, it should be noted that progression did not 
work as expected. Indeed, moving from Use to Modify to Create, back and forth as described by Lee et al. 
(2021) required increasing levels of CT, something the students were unable to employ sufficiently without the 
guidance of the teacher.  

Future work will comprise more student groups to increase the study validity and reliability. Further studies 
will also be conducted with focus on the type and level of CT required in the process of mathematical problem 
solving. 
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