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11.1 Introduction

Students in mathematics study programs are expected to acquire basic algorithmic
and computational thinking (CT) skills, in addition to learning emerging program-
ming languages (Wing, 2014). These are considered important competencies for
future work in society and should be acquired by all university mathematics stu-
dents to improve their mathematical problem-solving skills by benefitting from CT
and the power of programming languages (Shute, Sun, & Asbell-Clarke, 2017). It is
assumed that with easier access to digital technology in higher education, the inte-
gration of programming activities and application of CT skills into teaching and
learning could be easier than in previous years. Indeed, until the relatively recent
re-emergence of interest for integrating CT and programming in school mathemat-
ics, this topic received relatively little attention in the research community. Still,
despite the renewed interest, there is little research on linking CT and programming
with mathematics at the university level (Buteau, Muller, Mgombelo, Sacristan, &
Dreise, 2020).

This study is an attempt to contribute toward the advancement of the potential
value of CT at the undergraduate level when students engage in mathematical
problem-solving through CT and programming, while uncovering both opportuni-
ties and challenges encountered by the students when trying to connect mathematics
with CT and programming.

This chapter is structured as follows. Firstly, the theoretical framework is out-
lined. Secondly, the chapter describes the context of the study, research question,
methods, and the mathematical task to be solved. Then, the results are reported and
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analyzed. This is followed by a discussion and pedagogical implications of the
results. Finally, the limitations of the study are highlighted, and recommendations
for future work conclude the chapter.

11.2 Theoretical Framework

The application of computational thinking (CT) and programming for mathematical
problem-solving has had a relatively long history in mathematics education (Papert
& Harel, 1991; Shodiev, 2015). Today, CT and programming languages are becom-
ing a key learning goal of mathematics courses from primary to university level.
Drawing on the research literature, the theoretical framework and associated terms
and notions underlying this study are outlined in the following sections.

11.2.1 Computational Thinking (CT): A Review
of the Research Literature

While a large volume of research studies on CT and programming in mathematics
at the school level exists, there is little research at the university level on linking CT
and programming with mathematics. Some important research issues and chal-
lenges have been identified.

Broley, Caron, and Saint-Aubin (2018) reported that teachers have different
understanding and interpretations of CT and programming. They do not associate it
automatically with a systematic and well-organized way of mathematical problem-
solving with best possible outcome. Moreover, there may be numerous justifications
for exposing students to CT and programming depending on the educational
situation.

Similarly, Li et al. (2020a, 2020b) argued for the complexity of CT, which is not
synonym with “computing” or “computer” in a restricted sense. Rather, CT is a
model of thinking with a multifaceted theoretical perspective. CT is important not
only in computer science and mathematics but also in other disciplines of STEM.

In more general terms, Malyn-Smith and Angeli (2020) distinguished between
two definitions of CT, one focusing on defining CT by disaggregating its elements
and another on exploring the integration of CT into disciplinary learning through its
practices. While there are similarities between these two definitions, there are sev-
eral differences. Accordingly, the challenge includes the evolution of a common
definition of CT, and a shared understanding of CT, comprehensively integrating CT
into curricula.

In terms of theoretical frameworks, Buteau, Muller, Marshall, Sacristan, and
Mgombelo (2016) discussed CT and programming from a broad perspective based
on Wing (2008) and other researchers, and from the perspective of mathematicians’
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research practices, partly informed by the constructionist paradigm (Papert & Harel,
1991), before they developed their theoretical framework on their view of learning
mathematics by engaging in CT, drawing mainly on the instrumental approach.

Similarly, Buteau et al. (2018) used the constructionist approach for the class-
room implementation of programming and the instrumental approach to address a
student’s appropriation of CT and programming as a tool for the exploration of a
mathematics concept, theorem, conjecture, or a real-world situation. See also
Buteau et al. (2020) for the use of instrumental genesis (an important element of the
instrumental approach) stages of programming for mathematical work.

Gueudet et al. (2020) also used the instrumental approach to highlight the links
and connections between mathematical and programming competencies, which are
quite complex and increasingly important at the university level. The study recom-
mends deepening the knowledge about these complex links and their evolution,
including CT even though this notion is not mentioned in the article.

In line with Gueudet et al. (2020), an overview of research done by DeJarnette
(2019) concluded that the question that is still underdeveloped in existing literature
on CT at the university level is how students develop skills when interacting within
an environment that merges and connects mathematical thinking with CT and
programming.

Summarizing, the research literature reveals important issues and challenges to
be addressed for the advancement of mathematical problem-solving through CT
and programming and the importance of integrating these skills into mathematics
courses and work of today’s mathematician (Broley et al., 2018). This study aims to
address some of these issues and challenges, in particular the complex links between
mathematics, CT, and programming.

11.2.2 Computational Thinking (CT)
and Mathematical Thinking

Several definitions of the term CT exist in the research literature. Wing (2014)
described CT as “the thought processes involved in formulating a problem and
expressing its solution(s) in such a way that a computer—human or machine—can
effectively carry out.” Misfeldt and Ejsing-Duun (2015) described CT in similar
words. It is the ability to work with algorithms understood as systematic and struc-
tured descriptions of problem-solving and construction strategies. Filho and Mercat
(2018) defined algorithmic thinking as the process of solving a problem step by step
in an effective, nonambiguous, and organized way that can be translated into instruc-
tions to solve problems of the same type by an individual or a computer.

Wing (2008, 2014) indicated that the main commonality between CT and math-
ematical thinking is problem-solving and a structured step-by-step construction
process. Likewise, mathematical thinking consists of problem-solving processes,
beliefs about mathematics, and justification for solutions (Shute et al., 2017, p. 145).
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Accordingly, it involves the application of mathematical skills to solve mathemati-
cal problems, e.g., equations and functions (Shute et al., 2017, p. 145). The authors
concluded that mathematical thinking and CT have a lot of communalities: prob-
lem-solving, modeling, data analysis and interpretation, as well as statistics and
probability (Shute et al., 2017, p. 145). Furthermore, CT has communalities with
engineering thinking in terms of design and evaluation of processes (Pérez-Marin,
Hijon-Neira, Bacelo, & Pizarro, 2020), which is similar to algorithmic thinking and
design of programming code. Moreover, CT and programming constructs such as
variables and flow statements (if-then-else, for, while, repeat, etc.) are closely con-
nected to arithmetical and mathematical thinking (Lie, Hauge, & Meaney, 2017).
This close connection between mathematical thinking and CT might provide
opportunities for mathematical problem-solving. In contrast, programming skills
alone without the mediation of CT are important but may not be sufficient to
improve mathematical problem-solving. Clearly, CT is not the same as program-
ming, but being able to program and test program codes is a result of being able to
think computationally (Li et al., 2020a, 2020b; Shute et al., 2017; Wing, 2008).
Thus, CT skills are critical for building efficient algorithms for mathematical
problem-solving rather than trial and error and getting the program to run (Topalli
& Cagiltay, 2018). In other words, CT requires students to be engaged in a continu-
ously changing problem-solving process until an appropriate solution is found by
designing effective algorithms that can be translated into computer programs.

11.2.3 A Three-Step Iterative Approach to Mathematical
Problem-Solving Through CT and Programming

Drawing on the research literature (Kotsopoulos, Floyd, Nelson, Makosz, & Senger,
2019; Lee & Malyn-Smith, 2020; Romero, Lepage, & Lille, 2017; Santos, Tedesco,
Borba, & Brito, 2020; Weintrop et al., 2016), this chapter proposes a three-step
iterative approach to connect mathematical problem-solving with CT and program-
ming (Fig. 11.1).

Firstly, students should have a good mathematical background to benefit from
CT and programming languages. More specifically, they should be able to benefit
from their knowledge to make sense of the task and have a mathematical under-
standing of it before formulating an algorithm and starting programming. Secondly,
CT should enable students to analyze and decompose the mathematical task into
smaller sub-tasks, analyze them in a different way than one would otherwise do in
educational settings, and design an algorithm on how to solve it step by step before
programming it. Engaging students in mathematical problem-solving through CT
may enable a better understanding of mathematics beyond textbook mathematics
and paper-pencil techniques. Thirdly, students should be able to translate the math-
ematical solution with the associated algorithm to the constructs of the program-
ming language. This presupposes that the language is usable for novice students.



11 Undergraduate Mathematics Students Engaging in Problem-Solving... 201

Mathematical problem-solving

\

Mathernfnatmal thinking Comp_utat:onal thm_k_lng Programming
Making 5eml:e and > Analysis am.i decomposition — Program coding and program
understanding of of the task in sub-tasks and code testing and evaluation

mathematical problem formulation of an algorithm
T
A A
Lo sm e ssnes s s ey e e B e A

| Make sense of algorithm and program code |

Fig. 11.1 Three-step approach to connect mathematical problem-solving with CT and
programming

This is not a linear approach beginning with a mathematical problem and ending
with programming and code testing. The approach may include numerous feed-
backs to previous steps to make sense of the algorithm and program output. It is also
particularly important to consider interactions between mathematical thinking and
CT. Using CT and programming in mathematics courses should provide opportuni-
ties to help students do mathematics and gain new knowledge that is otherwise dif-
ficulttoacquire withoutexperimenting with the program and thinking algorithmically.
However, this might be difficult to achieve for novice students unless the mathemat-
ical tasks are well designed, mathematically sound, and faithful to the underlying
mathematical properties.

11.2.4 Programming and Usability Issues

When referring to the notion of usability or usable technologies in mathematics
education, the research literature focuses on educational software such as GeoGebra,
CAS, and SimReal (Artigue et al., 2009; Bokhove & Drijvers, 2010; Hadjerrouit &
Gautestad, 2019). However, programming languages differ from educational soft-
ware and how they are used to implement mathematical problems where one, for
example, can graph a function or compute an integral simply by entering the func-
tion and pressing a button in GeoGebra or similar. Hence, evaluating the usability of
programming languages might not be as straightforward as it may seem. Still, three
usability criteria can be applied to programming languages with slight
modification.

The first criterion is the degree to which the user interface of the programming
language is easy to use and understand. Secondly, a usable programming language
should allow a quick familiarization with it in terms of learning the language con-
structs, such as variables, if-then-else, for and while loop, or repeat. The third crite-
rion is the quality of feedback provided by the program in terms of semantic and
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syntax error messages and whether these are useful to foster a successful implemen-
tation of the algorithmic solution through testing, correcting and improving the pro-
gram, and making sense of the program output in terms of the mathematical solution
to the problem.

These usability issues are connected to each other. Interface usability and famil-
iarization with the programming language constructs are a prerequisite for success-
ful implementation of the program and making sense of the solution. Indeed,
technical programming constraints may result in demotivation and frustration from
using the programming language. This can happen if there are technical usability
issues or the program is not well designed. It can then be difficult to detect runtime
or syntax errors, even if the programming language being used—MATLAB—comes
up with hints. As a result, students may not work on their own if the feedbacks from
the program are not comprehensive.

11.2.5 CT, Programming, and Pedagogical Considerations

A purely technical approach to CT and programming will not succeed unless stu-
dents’ engagement with mathematical problem-solving is placed in a pedagogical
context. A pedagogy-based approach to CT and programming should enable a good
degree of autonomy so that the students can work on their own and have a sense of
control over their mathematical learning. Clearly, students should be able to acquire
knowledge without being completely dependent on the teacher. Moreover, CT and
programming languages should be a motivational factor for learning mathematics.
In other words, CT should support students’ engagement with problem-solving by
means of intrinsically motivating tasks that are tied to the students’ mathematical
activities. Finally, interacting with a programming language when engaging in
mathematical problem-solving should be mediated by CT through a structured con-
struction of effective algorithms.

11.3 The Study

11.3.1 Context of the Study and Research Question

This work is a single case study conducted in the context of a first-year undergradu-
ate course on programming with applications in mathematics. The participants were
two students volunteering from a class of 8, enrolled in the course in 2019. The
students had varied knowledge background in mathematics, but no experience with
the programming language MATLAB. The course introduced the basic constructs
of MATLAB, e.g., single variables, arrays, control flow statements, and functions.
The course also discussed the major steps in systems development, i.e., analysis,
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design, implementation, and testing. Ultimately programming was used for numeri-
cal analysis. No explicit training on CT was provided, though. Student program-
ming exercises made up a major part of the course. However, they had no focus on CT.
The research question addressed in this chapter is: How do students engage in
mathematical problem-solving through CT and programming activities?

11.3.2 Mathematical Task

The mathematical task presented to the students in this research study was as
follows:“The length of a curve may be approximated using Pythagoras’ theorem by
positioning a triangle adjacent to the curve (Fig. 11.2, left, below). The length of the
green line between A and B may then be approximated as /x* +y” . The task is to
write a MATLAB function approximating the curve length of f(x) = 2* between two
given x-values (Fig. 11.2, right, below).

A function skeleton is as follows:

* Function length = length_estimate(x1, x2),
* Length =

Determine the formula, based on x1 and x2, to replace the question mark. To
calculate the square root, you may use the MATLAB function sqrt. The command
sqrt(x) will produce Jx o

Approximating curve length in this fashion is a mathematically sound first
approach. If extended to a sum of an ever-increasing number of ever smaller trian-
gles, it will converge to the actual curve length.

f@y=2_~

Fig. 11.2 The mathematical task
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11.3.3 The Programming Language MATLAB

MATLAB is a mathematics software with a built-in C-based scripting language. A
screenshot of the script editor containing a suggested solution to the task is shown
in Fig. 11.3.

This is very similar to C, except for that in MATLAB syntax the function return
variable, e.g., “length” in Fig. 11.3, is located in the function header instead of in a
separate return statement.

11.3.4 Data Collection and Analysis Method

The two participating students were presented with a mathematical task to solve,
while responding to questions in a dialogue with the teacher on the mathematical
solving process. The main data collection method used is a task-based semi-
structured interview with the students. Open-ended questions were also used to gain
a deeper understanding of some important issues.

In terms of data analysis of the results, the three-step approach presented in the
theoretical framework (Sect. 2.3) served as a reference for analyzing the students’
problem-solving process, that is:

1. Understand the mathematical task.

2. Analyze and decompose the mathematical task, and then design an algorithm on
how to perform the solution step by step before programming it.

3. Finally, translate the algorithmic solution to the MATLAB programming lan-
guage code, with eventual feedbacks to previous steps 1 and 2.

More specifically, the students were expected to solve the mathematical task
presented to them in Sect. 3.2. in three steps as follows:

e Understand the task, that is, using Pythagoras’ theorem to calculate the
hypotenuse.

* Formulate an algorithm, that is, find the lengths of the triangle hypotenuse using
the function f(x) = 2%, relating it to x1 and x2.

* Translate the algorithm into MATLAB code, corresponding to the sample shown
in Fig. 11.3.

| | length_estimatem i_-!- 1
1: -function length = length estimate(x1, x2)
Pk length = sgrt((x2 - x1)72 + (2*x2 - 24x1)"2);

Fig. 11.3 MATLAB script editor with task solution
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The analysis of the results seeks indications of students’ problem-solving through
CT by means of MATLAB according to this three-step approach. This is not the
same as analyzing and coding in the sense of grounded theory without theoretical
background. Rather, it is an analytical tool that tries to address the research question
about how students engage in mathematical problem-solving through CT and pro-
gramming activities drawing on students’ interviews when solving the mathemati-
cal task. The interviews were transcribed and analyzed according to an inductive
strategy based on the interplay between the three-step approach and the empirical
data collected by means of semi-structured interviews (Patton, 2002).

11.4 Results

The results describe how the participating students engage in mathematical problem-
solving through CT and MATLAB. The students were given the task described in
Sect. 3.2. The abbreviations S1 and S2 are used for the students, and T for the
teacher.

11.4.1 Student 1 (S1)

At the time of the interview, the student almost had completed the first semester of
a bachelor program in mathematics. The interview took place in a classroom with
the student, the teacher, and an observer present. Audio from the session was
recorded and the dialogue later transcribed. The student brought own computer and
used it to program in MATLAB. A piece of paper and a pen was put in front of the
student with instructions to use if desired. The task was presented to the student on
a sheet of paper as the interview started.

It took some time before the student made sense of the mathematical task. The
teacher then asked the student to develop a skeleton of the solution. The student did,
and started thinking about the length, but suggested an incorrect solution, based
only on the values of x1 and x2:

S1: 1 first sat and thought function length, estimating length, xI, x2 and then I
thought length is equal to the square root of xI to the power of two plus x2 to the
power of two.

At this stage, the student showed a basic mathematical and algorithmic under-
standing of the task, by referring to the mechanisms of Pythagoras’ theorem and
linking it to the variables available in the MATLAB function. However, the student
failed to see the need for including the function f{x) = x? in the calculations.

After some calculation trials, the student noticed that the attempted solution was
wrong. Then, the teacher encouraged the student to think computationally:
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T: But before you start using MATLAB, are you going to make an algorithm (...), for
problem-solving before you start using MATLAB?
S1: 1 just have to sit and think about it.

But still, the student continued guessing and calculating without thinking com-
putationally. Neither did the student attempt to make use of pen and paper as an aid
in structuring the thought processes, for instance, by drawing a sketch. After a
while, the student’s mental model reversed, and the student attempted to calculate
the known x and y coordinates from the unknown hypotenuse. At this point the
teacher intervened:

T: Now you say you know the hypotenuse and calculate y. But the hypotenuse is the
unknown parameter here, the one you are supposed to calculate.

S1: Yes.

T: So now you have turned the problem around (...). It is just that that thought was
a little backwards, maybe.

S1: Yes, it is quite possible.

Following this short dialogue, the student started using MATLAB without devel-
oping an algorithmic solution or a clear strategy for solving the problem. The
teacher then engaged in a discussion guiding the student step by step toward an
algorithmic solution and a MATLAB function, linking the program code to the
mathematical task by continuously referring to Fig. 11.2. Eventually the program
was tested with x1 = 0 and x2 = 1 and output 14,142. The teacher then wanted the
student to reflect on the fact that the number probably was the square root of 2, but
got no response. The student thus failed to make mathematical sense of the output,
realizing that the test coordinates in question would result in x = 1 and y = 1 as in
Fig. 11.2 and thus a hypotenuse of V1+1 = V2.

Referring to Fig. 11.1, an iterative step-by-step approach from mathematical task
to tested program code now had been completed. The teacher then wanted the stu-
dent to reflect on the process just undertaken:

T: (...). Do you have anything to say about (...) like that afterwards?

S1: No, I am, I was a little bit in doubt about how to (...) First, it was the task you
asked about (...) and then it was (...) and then I thought (...) f{x) is the function
in x2 would be that point minus the function of that point (...) that it would be the
length. But that is where I was wrong, I felt (...) Because you meant it to be here
(...) and I understand that now.

T: Yes, that is the point, (...). That is why you have to use Pythagoras to find (...).
Did you think (...) There was a hint here, wasn’t there? Square root?

S1: Yes, yes, yes, the square root (...). I knew it was probably wrong, but I just did
not quite understand what it was.

T: Well, because there was a clue there that you were unable to use, wasn’t there.
Then you realize that there is something (...)

This excerpt shows there is little indication that the student was following a clear
problem-solving strategy, which confirms that making sense of the problem and
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having a mathematical understanding of the task is of crucial importance before
formulating an algorithm and starting programming, which is not the case in this
excerpt. A few minutes later, the teacher asked the student if there is a tendency to
favor pen and paper to solve the task algorithmically before starting using MATLAB
since developing an algorithm does not automatically require using the computer:

S1: If I have it in my head, sometimes I start with MATLAB, and then I write some
sort of sketch before going through it carefully. If I am not sure, 1 will start
with paper.

T: Maybe the task was not quite clear?

S1: Yes, so far, but I had probably forgotten some of the principles there.

T: Principles related to MATLAB or to the mathematical assignment?

S1: To the mathematical problem.

Again, the interview shows that the problem-solving process requires a good
understanding of the mathematical task and computational thinking skills before
programming it. Here again, the teacher reminded the student about the importance
of algorithmic thinking before translating the task into MATLAB code:

T: Now, the point of the assignment is that you should be able to translate the math-
ematical task into code in MATLAB. That is really the point here.

S1: Yes, I felt that when I understood the mathematical thing, I had no trouble put-
ting it into MATLAB. It was simply that I had (...) forgotten a bit the length thing
there. That f of that minus f of that is delta y, then.

11.4.2 Student 2 (S2)

This student was an in-service mathematics teacher taking the course as a self-
study. The student lived far from campus, and the interview therefore took place in
the video conferencing system Zoom (https://zoom.us/) with only the teacher and
the student present. The session was recorded, and the dialogue later transcribed.
The task was sent to the student by e-mail as the interview started.

After a short dialogue with the student on the menu structure of MATLAB,
which the student found unappealing, the student started studying the task. The
teacher motivated by pointing out that this kind of exercise lately had become part
of the exams in the programming course. Then, the teacher invited the student to
reflect on the solving process:

T: I just have to ask you ... How will you proceed to attack such a task? Will you go
straight for the keyboard, and then ...? You see, you have got a small skeleton
here; will you go straight for the keyboard and start programming it, or will you ...

S2: No, first I really try to think it through carefully, what the task is really about,
here. And then I tend to make a draft as a first thing. (...) That I write down what
the assignment actually asks for, and then that I make myself, in a way, a kind of
design, then.
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T: A design, yes.

S2: And what is it that the program is supposed to be able to calculate here, then?
And then, when it is plainly clear to me, I would have gone into more depth on ...
on ... what is somehow ... how I am supposed to describe the code here. And
here, in this case, there is a function, which is an estimate of length. And then I
had to go in and have a look at the length. And then put it in a formula ... Oh, I
do not know if you want me to do the task itself, kind of.

T: (...) What we are a looking for, is the thought process. You say you create a draft,
do you write code then, or draw boxes, or?

S2: Sometimes I have drawn one of these ... in a way a line, then. And then I have
drawn a box. Oy, if it involves if-statements, then I have drawn something a bit
like this. (Shows sketch like Fig.11.4, left, below.) If you look here. And then I
have sort of a condition inside here, and then I have, if there is an if at the condi-
tions, then I put this there (Shows sketch like Fig.11.4, right, below, pointing to
the new line.)

T: That is what we call a flow chart.

S2: Flow chart, simply.
T: Yes, that is probably something you have learned once, maybe.
S2: Yes, I learned it in this study.

This excerpt shows that the student was aware of the importance of designing an
algorithmic solution before starting to program the task, in stark contrast to student
1 who struggled to understand the mathematical task and formulating an algorithm.
Words like “design,” “draft,” “box,” and “function” point to algorithmic and compu-
tational thinking. Associating “if-conditions” with a flowchart also demonstrates the
ability to create an abstract model from programming language construct.

Furthermore, the student makes it clear that employing CT before starting to
program is a practice that has developed over time, the process being motivated by
personal experience:

T: Yes, okay, yes. Very good, for it has turned out that people are very slow to
adopt ... They often go straight on to the programming. And that works fine when

Fig. 11.4 Student’s sketches
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the task is easy, but when it gets a little more complex, then you need to split
things up a bit.

S2: Yes, I had not thought about it until I, in a way, read it in this study, but after that
I have started to ... then I spend a bit of time in the process before I start typing
the formula. If I have already started typing the formula, and then want to change
it afterwards, then I have discovered that I do a lot of mistakes. So now I have
tried to spend plenty of time on the preparatory work, so that I am one hundred
per cent sure of what it is my function or program is supposed to do. And now I
know it is a function, I am supposed to write, and what is it ... what is it I am
actually supposed to calculate here?

In this excerpt, the student demonstrates the ability to reflect upon own practice
and followingly to abstract and articulate the essence of the process, mentioning the
CT concept of dividing a task into smaller subtasks:

T: (...)

S2: It is the kind of like you analyze this pretty carefully, and then you divide it, and
then ... in away ... I do not know, I work kind of structured, then, with one piece
at a time.

T: Yes, but that is really good. It is a concept one has in programming, you make a
design, then you divide it into pieces, where you can look at one piece at a time.

Then, the student continued explaining the way of thinking algorithmically and
computationally, including the programming process and the testing of the program:

S2: And then after I have made ... made one, then ... if it ... now this task was a little
bit different, then ... but ... but if I have made a program ... after I have written
the entire program code ... If it typically is with for-loops and everything, then I
always run through the program in my head. And write down that, okay, now, n
is equal to 1, What happens to that and that value. In that way I always get to put
it to the test, and then I detect possible errors.

Referring to the step-by-step process indicated in Fig. 11.1, the student here
switches back and forth between CT and programming, by alternating between a
mental analysis of the mechanisms in the algorithm and testing the actual pro-
gram code.

11.5 Discussion

This study aimed to address this research question: How do students engage in
mathematical problem-solving through computational thinking and programming
activities? The results show that the introduction of CT and programming skills into
the undergraduate level presents many challenges and opportunities for students
committed to improving their understanding of mathematics. The analysis of the
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results shows that the participating students had two opposite experiences. They
engaged differently in the mathematical problem-solving process. While the first
student (S1) felt challenged by the mathematical task and the way to handle it
through CT and programming, the second student (S2) made good use of CT, algo-
rithms, and MATLAB to solve the task. The main finding of this study is that explic-
itly linking mathematical thinking with CT and programming is the key factor to
ensure a successful implementation of the three-step iterative approach to mathe-
matical problem-solving and enhance students’ understanding of mathematical
concepts.

11.5.1 Summary of the Results

For student 1 (S1), the first challenge was the lack of ability to create a mental math-
ematical model of the problem, hindering the student in making sense of the task,
and then developing a problem-solving strategy translatable into an algorithm. This
illustrates the approach presented in Sect. 2.3, requiring students to have a good
mathematical understanding of the task as a basis for further development and use
of computational and algorithmic thinking skills. The second challenge was related
to the implementation of the algorithm using the constructs of the programming
language. The student was unable to relate it to the mathematical task using an algo-
rithm. Neither was the student able to make mathematical sense of a result output by
the MATLAB program. Finally, once the teacher had guided the student step by step
through the task, the student was unable to recapitulate the process. Clearly the
problem-solving process in three steps outlined in the theoretical framing was chal-
lenging for the student, even after completing a programming course.

Student 2 (S2) was on the other hand very prepared to make use of CT. Student
2 had sufficient mathematical modeling capacity to make sense of the task and then
to design a structured problem-solving solution translatable into an algorithm.
Moreover, in contrast to student 1, student 2 demonstrated good ability to reflect,
abstract, and structure and was able to use these abilities to analyze the mathemati-
cal task and to formulate an algorithm. This student was an in-service mathematics
teacher and thus supposedly was trained in mathematical modeling and problem-
solving prior to taking the programming course. Referring to the approach pre-
sented in Sect. 2.3, the mathematical abilities may have propagated through the
steps in the model, facilitating the use of CT and programming. This is in contrast
to student 1, where struggling with making sense of the mathematical task was a
hindrance in going through the other steps in the approach.
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11.5.2 Pedagogical Implications

Several pedagogical implications for teaching and learning CT for mathematical
problem-solving can be drawn from the results. Firstly, the opposite students’ expe-
riences show that the minimum requirement for applying CT to mathematical
problem-solving is a good combination of background knowledge in mathematics,
algorithmic thinking skills, familiarity with the programming language constructs
in question, program testing and validation, and making sense of the program out-
put. Clearly, if students have the basic mathematical understanding required, they
would be able to easily analyze mathematical tasks and break them down into small
sub-tasks, designing an algorithm before moving on to programming as student 2
demonstrated in this study. These requirements and ways of problem-solving should
be supported and implemented to become integral parts of university mathematics
courses.

Secondly, to ensure a successful integration of CT into mathematics courses, the
pedagogical setting around these courses should be well designed in terms of varied
and intrinsically motivating tasks that reflect students’ knowledge level. A good
integration of CT into mathematics courses should also promote student autonomy
and ownership. However, autonomy cannot be fully expected for novice students
without good knowledge background in mathematics and some familiarities with
CT and programming language constructs. Clearly, CT is a difficult matter for nov-
ice students, because it is more a way of thinking than a computational skill to
acquire.

Thirdly, as this study shows and following the second implication, the role of the
teacher as a facilitator of learning is still crucial to assist novice students in mathe-
matical problem-solving by means of CT and programming. The role of a knowl-
edgeable teacher is to foster CT and connections between mathematical thinking,
programming, and algorithmic thinking.

Finally, following the second and third implication, a pedagogical setting that
promotes a learning environment capable of motivating students should be created
around mathematical problem-solving, CT, and programming practices. In other
words, to alleviate the difficulty of thinking computationally, the three-step approach
presented in this study needs to be combined with a pedagogically sound model,
which emphasizes two elements: The teacher as facilitator of learning, and peer col-
laboration to allow the more competent students help those facing difficulties in
accomplishing the computational tasks (Kuo & Hsu, 2020). Research on peer col-
laboration may contribute to explore collaborative learning occurring in the process
of learning CT and programming.
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11.5.3 Limitations of the Study

While the results from the opposite students’ experiences and insights of the present
study contribute to offer a better understanding on the interactions between CT,
mathematical thinking, and programming, the study is limited to two students and
can therefore not be generalized to all students enrolled in the course. The study is
also limited to a very specific mathematical task (Pythagoras’ theorem) involving
undergraduate students with no prior experience in CT and programming. A final
limitation that may have influenced the study is the method being used to gather
data, that is, the semi-structured interview with the students once they have finished
the course, one performed online.

11.6 Conclusions and Future Research

Although the participating students may not be representative for the average stu-
dent enrolled in the course and the task was specific, two preliminary conclusions
can be drawn from the study. Firstly, the connections between mathematics, CT, and
programming languages are quite complex in line with the research literature (Li
et al., 2020a, 2020b) and need to be clearly articulated in authentic mathematics
educational settings. Secondly, engaging in mathematical problem-solving through
CT and programming requires good background in mathematics, algorithmic think-
ing, and familiarity with the programming language constructs.

The study is still a work in progress. The authors will continue working with
undergraduate students and programming courses with applications in mathematics
using interventions involving a wide range of participants and whole classes. Future
work aims at investigating the following issues.

Firstly, future research will analyze the application of CT in varied, more dif-
ferentiated, and ill-defined mathematical tasks to deepen the understanding on how
CT skills are deployed and applied to solve these kinds of mathematical tasks.

Secondly, future research will focus on more elaborated and in-depth analysis of
students’ experiences with mixed methods to ensure more reliability and validity of
the results. Work will include more participants and a mix of quantitative and quali-
tative methods to assess the impact of CT on students’ learning and uncover what
benefits and obstacles different students actually experience in authentic educa-
tional settings while thinking computationally to solve mathematical problems, in
line with the research literature (Broley et al., 2018).

Thirdly, in terms of the theoretical framework being used in this study, future
research work will explore the three-step iterative approach to mathematical
problem-solving in more details and depth, in particular the interactions between
mathematical thinking, CT, and programming to highlight their communalities and
potential differences and suggest changes to the proposed approach. Future research
will also look at alternative theoretical frameworks and learning theories used in
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mathematics education such as Vygotsky’s sociocultural theory, Trouche’s instru-
mental approach, Brousseau’s theory of didactical situations, or Chevallard’s
anthropology theory of didactics, but also constructionistic approaches to examine
carefully whether these frameworks and theories can be combined and coordinated
with the approach presented in this study.

Fourthly, future research should consider usability issues of programming lan-
guages since technicalities and familiarity with the language are prerequisites for
mathematical problem-solving. Ease of use and understanding of language con-
structs, interactions, and program feedback of the programming language should be
considered in future implementations since these are useful to foster successful
implementations of algorithmic solutions to mathematical problem-solving.

Finally, future research will conduct an in-depth examination of how teachers
apply CT and programming. This would allow researchers to further probe what
teachers view, understand, and interpret as CT and explore how mathematical
problem-solving relates to CT and programming from the teacher’s point of view.
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