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Introduction

This dissertation deals with three main topics:

1. To explain how the approximation property of a Banach space X forces
the space of finite rank operators into X from a fixed, but arbitrary
Banach space Y , to be an ideal of its superspace of weakly compact
operators from Y into X.

2. To substitute the classical term ”second category” with the term ”thick”
in the Uniform Boundedness Principle and observe that this term is
the weakest condition such that the conclusion of the theorem is still
true and then to explain how ”thickness” is related to surjectivity of
operators.

3. To show that unit balls in uniform algebras are as non-dentable as possi-
ble by proving, by rather elementary means, that, when such a unit ball
is divided into two parts by a hyperplane such that both parts contain
at least two distinct points, then both parts have diameter 2.

The first topic is explained through the paper Factorization of weakly com-
pact operators and the approximation property [1]. It is a joint work with my
supervisor, professor Åsvald Lima at Agder University College, and professor
Eve Oja from Tartu University, Estonia. I want to express my warmest thanks
for letting me take part in this joint project. This paper is Chapter 2 in the
dissertation.

The second topic is discussed through the paper Boundedness and sur-
jectivity in normed spaces [3]. This paper is a considerable extention and
generalization of the article A strong uniform boundedness principle in Ba-
nach spaces [2]. The extended paper is Chapter 3 in the dissertation.

The third topic is covered by the paper Slices in the unit ball of a uniform
algebra [4]. This is a joint work with professor Dirk Werner at Freie Univer-
sität, Berlin. I highly appreciated that cooperation and must admit that I
probably would not have found such a general result without his help. This
paper is Chapter 4 in the dissertation.

This dissertation is the result of more than four years of teaching and
doing researches in a 60/40 combination at Agder University College. I want
to thank the Institute of Mathematics for giving me the opportunity to work
in a nice atmosphere during this ”qualifying process”. Especially, the goodwill
from Arne Holme, will never be forgotten.
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During this period I have received approximately $ 1500 from Agder Col-
lege University yearly to cover travel expences. This has given me the possi-
bility to take part in four international conferences and three spring schools
in Paseky, Czech Republic. Also, the Norwegian Research Council has kindly
supported two ten-days stays in Tartu, Estonia. My warmest thanks for fi-
nancial support.

The formal supervisor of this doctoral work was supposed to be professor
Arne Stray at the University of Bergen. The reason why I put it this way
is that he has been much more than a formal supervisor. It was him who
pointed out the connections to the theory of bounded analytic functions in
chapter 3 and he has all the way been very helpful.

Åsvald must have his morning coffee some minutes after eight. I now have
the same custom, but I want to say that this is only partly because of the
coffee. Thank you so much for nice mornings and for all you have done to
help and encourage me from I was an undergraduate student and till now.
My hope is that although your formal role as a supervisor is over, you will
still supervise me for many years and hectoliters of coffee.

My wife and three children have had to get used to a person who is not
always listening to what they are saying, because of mathematics. I will
probably never change, but I do hope that when you really need me I will
always be listening. After all, there is more in life than mathematics.

Kristiansand, August 2001.

Olav Nygaard
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Chapter 1

The framework

In this introductory chapter we will try to give some overview over the de-
velopment of the concepts studied later on in this dissertation. Most of what
is written here can be found in the books [7], [15], [3], [5] and [13]. Only
when speaking about results that are not in one of this books, references to
original articles will be given. The introduction is meant for persons rather
well-oriented in mathematics, but not necessarily experts in functional analy-
sis. The chapter is written in an informative style and ideas important to put
the results in Chapters 2-4 in a perspective are given. When some important
progresses in functional analysis are not mentioned, it is because there seems
not to be connections to the subjects in this dissertation.

Early in the twenties it became clear that the framework complete, normed,
linear space was interesting and useful. This framework gives enough struc-
ture for strong theorems and, at the same time, the framework is wide enough
for a rich variety of problems and applications.

Very central in the development of this framework was the Polish school,
with Stefan Banach as the leading person. He also wrote the first book on the
subject, the famous Théorie des Opérations Linéaires [1]. Although many
other mathematicians also contributed heavily, the framework carries Ba-
nach’s name:

Definition 1.0.1. A Banach space is a complete, normed linear space. A
normed linear space is a (real or complex) vector space X where a function
‖ · ‖ : X → R is defined with the following three properties

(a) ‖x‖ = 0 if and only if x = 0
(b) ‖αx‖ = |α| ‖x‖ for all x ∈ X and all scalars α

(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X

The normed, linear space X is called complete if every sequence which is
Cauchy in the metric d(x, y) = ‖x− y‖ converges in X.

The sets U(0, r) = {x ∈ X : ‖x‖ < r, r ∈ R} form a basis for the topology
on X which the norm gives rise to. The norm ‖ · ‖ of the space can also be
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viewed as the gauge of U(0, 1). By (b) multiplication by scalar in the vector
space X is continuous from X × R to X. By (c) addition is continuous from
X ×X to X. Whenever there is a bounded, convex neighbourhood U at the
origin in a topological vector space, then the gauge of U defines a norm on X.

The norm function gives a nice compatibility between linear structure
and topological structure. For example, the closure B(0, r) of U(0, r) is the
set {x ∈ X : ‖x‖ ≤ r, r ∈ R}. The set B(0, 1) is called the unit ball of
the Banach space and is most often written as BX . It is a compact set in
the norm-topology if and only if the underlying vector space has but finitely
many dimensions. The boundary SX = {x ∈ X : ‖x‖ = 1} of BX is called
the unit sphere.

Since the Banach space X is a vector space, every linear functional on a
subspace Y of X can be extended to all of X. This is a consequence of the
Axiom of choice. Hahn and Banach proved independently that among the
extensions f̂ of a given functional f on Y , it is possible to find at least one
such that

sup
x∈BX

|f̂(x)| = sup
y∈Y,‖y‖≤1

|f(y)|.

Such an extension is called a norm-preserving extension.

Theorem 1.0.2 (Hahn-Banach theorem). Let X be a normed, linear space
and let Y be a linear subspace. Then every continuous, linear functional on
Y has a norm-preserving extension to all of X.

The set of continuous, linear functionals X∗ on a Banach space X is
again a Banach space, with pointwise addition and scalar multiplication, and
U(0, r) = {x∗ ∈ X∗ : supx∈BX

|x∗(x)| < r}. By the Hahn-Banach theorem,
for every x ∈ X, there exists an x∗ ∈ SX∗ such that ‖x‖ = x∗(x). Let us call
such an x∗ ∈ SX∗ a norm-giver. A subset of X∗ which contains a norm-giver
for every x ∈ X, is called a James boundary for X.

The Hahn-Banach theorem can also be used to prove that X∗ separates
closed convex sets from compact convex sets. In particular, X∗ separates
points on X and thus determines a locally convex topology on X called the
weak topology. Here are some facts which show that the weak topology on
Banach spaces has to obey strict laws:

Theorem 1.0.3. Let (X,w) be a Banach space equipped with its weak topol-
ogy. The following is true:

(a) If X∗ is separable (contains a norm-dense countable subset), then
(B(0, r), w) is a metric space, with metric dw(x, y) =

∑
i 2

−i|fi(x)−
fi(y)|, where (fi) is any dense, countable subset of SX∗.

(b) Weak convergence of bounded nets is equivalent to pointwise conver-
gence on fundamental sets in X∗ (Hahn 1922 [8] (sequence case)).
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(c) The norm closure and the weak closure of a convex set coincide
(Mazur).

(d) BX is weakly compact if and only if X is the dual of X∗.
(e) A set is weakly relatively compact if and only if it is weakly sequen-

tially relatively compact if and only if it is weakly countably relatively
compact (Eberlein-Šmulian-Grothendieck).

(f) If A is weakly compact, then co(A) is weakly compact (Krein-Šmulian).
(g) A set A is weakly compact if and only if every x∗ ∈ X∗ attains its

supremum on A (James).
(h) A bounded sequence converges weakly if it converges pointwise on a

James boundary J (Rainwater-Simons).
(i) The weak topology of a Banach space is never complete.

In case (d) we call the space reflexive. The above results clearly demon-
strate the possibility of finding strong theorems within the framework of a
Banach space. X also separates points on X∗ and so defines a weak topology
on X∗ called the weak-star topology on X∗. The norm-dual of X∗ is denoted
X∗∗ and the embedding τ : X → X∗∗, given by τ(x)(x∗) = x∗(x) is an isome-
try of X onto a closed subspace of X∗∗ which is weak-to-weak-star continuous.
Among the general results concerning the w∗-topology are:

Theorem 1.0.4. The following statements are valid:
(a) If X is separable, then (BX∗(0, r), w∗) is a metric space, with metric

dw∗(f, g) =
∑
i 2

−i|f(xi)− g(xi)|, where (xi) is any dense, countable
subset of SX .

(b) Weak-star convergence of bounded nets is equivalent to pointwise con-
vergence on fundamental sets in X.

(c) SX is weak-star dense in SX∗∗ (Goldstine).
(d) Weak-star closed, norm-bounded sets in X∗ are weak-star compact

(Alaoglu 1940).
(e) A convex set A ⊂ X∗ is weak-star closed if and only if A ∩ tBX∗ is

weak-star closed for every t > 0 (Krein-Šmulian).
(f) There is always a weak-star null sequence in SX∗ (Josefsson-Nissenzweig).

Concerning (d), it is important to observe that the weakly bounded and
the weak-star bounded sets are exactly the norm bounded sets. Thus, the dual
of a Banach space with its weak-star topology has the Heine-Borel property.

Many of the above results are true without assuming completeness. The
main reason why Banach chose completeness as an assumption, is probably
the Baire category theorem, which is valid for complete metric spaces. By
using this category theorem, two more corner stones of Banach space theory
can be proved (the first cornerstone is the Hahn-Banach theorem(s)). First it
is the
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Theorem 1.0.5 (Open mapping theorem). A continuous linear mapping
from a Banach space X onto a Banach space Y maps open sets onto open sets.
Consequently, a bijective, continuous linear mapping form a Banach space X
to a Banach space Y has automatically a continuous inverse.

From the Open mapping theorem the road is not long to the Closed graph
theorem stating that if T : X → Y is a linear map with closed graph in X×Y ,
then T is continuous. The third corner stone is the

Theorem 1.0.6 (Uniform boundedness principle). If (Tα) is a point-
wise bounded family of linear continuous operators between the Banach spaces
X and Y , then (Tα) is bounded in the norm-topology of the space L(X,Y ) of
linear bounded operators from X into Y .

The norm topology in L(X,Y ) is defined in the same manner as in X∗,
that is,

BL(X,Y ) = {T : sup
x∈BX

‖Tx‖Y ≤ 1}.

The Uniform boundedness principle is often called the Banach-Steinhaus the-
orem, but this is a little misleading, since Hahn proved the theorem first and
since the theorem could be proved exactly in the same way as many of it’s
special cases. However, Banach and Steinhaus were the first to prove it by
using Baire’s category theorem.

Functional analysis is (as mathematics in general) about giving and taking;
the more structure, the more and stronger theorems, the less structure, the
fewer and weaker theorems. A typical way of reasoning is to prove a certain
theorem within the framework of Banach spaces and then to take away the
assumptions that are not needed to reach the conclusion.

To sum up, a Banach space is a certain combination of three variables;
linear space, topology given by a norm and completeness. In Chapter 3 we will
play with the last of these three variables to see how this affects the Uniform
boundedness principle.

In addition to the three above mentioned variables one can add more
structure on the Banach space. Assuming a continuous multiplication from
X × X to X, such that X is an algebra, gives a Banach algebra. Assuming
an order structure, compatibel with the norm, results in a Banach lattice. An
important Banach algebra is the space L(X) of continuous linear operators
from a Banach space X into itself.

The algebraic assumptions and the topological assumptions of a Banach
space are closely connected. The algebraic properties of the norm give possi-
bilities to uncover geometric phenomena in the intersection of the the algebraic
and topological properties of the Banach space. Chapter 2 rests heavily on
geometrical arguments and, in Chapter 4, we will see how the assumption
of a commutative multiplicative structure on the Banach space X forces the
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unit ball of the (infinite-dimensional) Banach space to have certain geometric
properties far from being intuitive from our three-dimensional world.

We will now give some more background and perspectives for each of the
three chapters.

1.1 Separability, bases and the approximation prop-
erty

We have remarked that separability of X∗[X] allows us to work with the
weak [w∗] -topology as a metric on bounded sets. Some results in Banach
space theory are true only when separability assumptions are included, and
many theorems are much simpler to prove when invoking some separability
assumption.

Arguments in linear algebra often uses the existence of a basis. A gen-
eralization of the finite-dimensional basis concept is to define a basis as a
countable, bounded set (xn) ⊂ X, such that every x ∈ X has a unique repre-
sentation as an infinite linear combination

∑∞
i=1 aixi. This definition is due

to J. Schauder, who also constructed a basis for the Banach space C[0, 1]. If
a Banach space has a Schauder basis, then the set of finite rational combina-
tions of the xi’s is a countable, dense subset of X, so X is separable. The
linear functionals (fn) given by fn(x) = an are easily shown to be continuous
and the Uniform boundedness principle shows that (fn) is a bounded subset
of X∗.

When X has a basis, we can think of X as a linearly ordered sequence
of finite-dimensional subspaces Xn. The natural projections Pn from X onto
Xn then form a bounded sequence of finite rank operators in L(X) which
converges pointwise on X to the identity operator IX . It is natural to ask
whether all separable Banach spaces are built up this way, that is, whether
all separable Banach spaces have a Schauder basis. This question is called the
”goose-problem” since a living goose was promised as a reward to the person
who could solve it. The question was unsolved until the early seventies when
is was solved in the negative by Per Enflo. Enflo constructed an obscure
subspace of c0 which he showed could not have a basis.

The main research on the basis problem, however, was done by A. Grothen-
dieck in the fifties. Let us say a few words about his work. It is not difficult
to prove that if X has a basis, then for every Banach space Y , every compact
operator T : Y → X is the limit in norm of a sequence of finite rank operators
from Y into X. In different terms: The approximable operators from Y into
X are exactly the closed subspace of compact operators. The possibility of
approximating compact operators doesn’t rest on separability. Grothendieck
now showed that the approximable operators from Y into X coincides with
the compact operators if and only if the finite rank operators on X is dense
in L(X) in the topology of uniform convergence on compact sets. This last
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result doesn’t rest upon separability either. Grothendieck had now proved
that if he could find a Banach space such that IX is not approximable in the
topology of uniform convergence on compact sets, then this would imply the
existence of a separable space without a basis.

Definition 1.1.1. A Banach space has the approximation property (AP) if,
for every compact set K ⊂ X and every ε > 0, there exists a finite rank
operator S on X such that supx∈K ‖Sx− x‖ < ε.

The topology τ of uniform convergence on compact sets is a locally convex
vector topology on L(X,Y ), generated by the seminorms

‖T‖K = {sup
x∈K

‖Tx‖Y : K compact}.

Grothendieck was able to describe (L(X,Y ), τ)∗ and to put this description
into the framework of tensor products of topological vector spaces. This ob-
servation led him to numerous equivalent formulations of the approximation
property. The sad thing was that he couldn’t find a counter example to, nor
prove, any of them. Among the most interesting equivalent formulations is
the following

Theorem 1.1.2. The following statements are equivalent.
(a) There exists a Banach space lacking the AP.
(b) There exists a continuous function K(s, t) on [0, 1] × [0, 1] such that∫ 1

0 K(v, t)K(t, u) dt = 0 for every v and u, but
∫ 1
0 K(t, t) dt �= 0.

(c) There exists a matrix A = (aij)∞i,j=1 such that limj aij = 0 for every
i = 1, 2, ..., such that

∑∞
i=1maxj |aij| < ∞ but such that traceA =∑∞

n=1 ann �= 0.
A. Davie has given a proof that a matrix satisfying (c) exists. This proof is

still the simplest proof (although far from simple) that there exists a Banach
space without the AP. Finding new, equivalent formulations of the AP is still
interesting, since simpler examples of spaces lacking the AP then could be
found. In Chapter 2 at least one new formulation is given. It goes like this:
X has the AP if and only if, for every separable, reflexive space Y , BF(Y,X) is
dense in BW(Y,X) in the strong operator topology. Here F(Y,X) denotes the
(not closed) space of finite rank operators from Y into X andW(Y,X) means
the closed subspace in L(Y,X) of weakly compact operators from Y into X.

Enflo found his counter example inside c0. It was not by accident he
looked just there. Suppose X is a space lacking the AP. Then there must be
a space Y and a compact operator T : Y → X which is not approximable.
Grothendieck had proven that compact operators can always be compactly
factorized through a subspace Z of c0, i.e. there are compact operators T1 :
Y → Z and T2 : Z → X such that T = T2 ◦ T1. Any compact operator
defined on c0 is approximable. Since T is not approximable, neither T1 nor T2
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can be approximable. Thus Z does not have the AP and Z is a subspace of
c0. In fact, Z∗ doesn’t have the AP either because Grothendieck had proved
that the dual X∗ of a Banach space X has the AP if and only if all compact
operators defined on X are approximable. So Grothendieck knew there had
to be a separable dual space not having the AP, if any.

Just before Enflo’s counter example, Figiel proved that compact opera-
tors can be compactly factorized through reflexive spaces. More precisely, to
every compact operator T , there is a reflexive space ZT such that T can be
compactly factorized through ZT . Thus, he had shown that there had to be
a reflexive space lacking the AP, if any. The matrix in Davie’s proof can be
used to construct subspaces of c0 and lp, p �= 2 lacking the AP. l2 can’t have
subspaces without the AP because they are all separable Hilbert spaces and
thus isometric to l2 itself.

Again, let τ be the topology on L(X) defined by uniform convergence
on compact sets. Examinating Davie’s proof reveals that, in the non-AP-
subspaces of c0 and lp, p �= 2 it produces, it isn’t just impossible to τ -
approximate the identity operator by finite rank operators, the identity op-
erator can’t be τ -approximated by compact operators neither. This led to
a new concept; the counter examples don’t have the compact approximation
property (CAP). For some time it was open whether the CAP would imply the
AP. Willis showed in 1991, given any space without the AP, how to construct
a space still not having the AP, but having the CAP. He even constructed a
separable reflexive space with the CAP lacking the AP [18].

If a net converges τ to IX , it need not be norm-bounded in L(X). If it can
be chosen to be norm-bounded by some number λ, as is the case when X has
a basis, Grothendieck used the term bounded AP (BAP) or, more precisely,
λ-AP. If we can take λ = 1, X has the metric AP (MAP). Grothendieck
proved that separable duals with the AP must also have the MAP. Figiel and
Johnson showed in the early seventies that there exists a separable space (with
a separable dual) having the AP but not the BAP. They also found a space
having the BAP but not the MAP.

Knowing all this, it is easier to simplify Grothendieck’s proofs and to guess
new theorems. But still a lot of questions concerning the AP’s are open. Let
us mention some of them:

Question 1.1.3. (a) Suppose every compact T : X → X is approx-
imable. Does X have the AP?

(b) Does H∞ (the bounded analytic functions on the disc, with sup-norm)
have the AP?

(c) Suppose X has the BAP. Is there an equivalent norm ||| · ||| on X such
that (X, ||| · |||) has the MAP?

(d) Suppose X∗ has the CAP. Does X have the CAP?

In connection to (b), let us mention that the only classical space which is
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known not to have the AP is L(l2) (see [17]). Concerning (d) it is known that
the answer is negative for the MCAP (see [2]).

In 1979, J. Johnson [10] showed how to construct a norm-one projection
P : L(X)∗ → L(X)∗ such that ker P = F(X)⊥, when X has the MAP. In
more modern terms: If X has the MAP, then F(X) is an ideal in L(X).
In 1993 it was shown by Å. Lima [11] that the converse is true with some
additional assumptions on X (RNP). In particular, the converse is true for
reflexive spaces.

Question 1.1.4. Suppose F(X) is an ideal in L(X). Does X have the MAP?

Later, various authors have uncovered new theorems all showing that there
are close connections between AP’s in X and local complementability of op-
erator subspaces in L(Y,X). Chapter 2 in this dissertation follows up this
research uncovering the following theorem:

Theorem 1.1.5. X has the AP if and only if for every Banach space Y ,
F(Y,X) is an ideal in W(Y,X).

Returning to Schauder bases, Mazur proved that every Banach space con-
tains a closed subspace with a Schauder basis. A Schauder basis is called
unconditional if the unique series expansions are unconditionally convergent.
Every Lp[0, 1] , 1 < p <∞, has an unconditional basis (the Franklin system).
Around 1960 L1[0, 1] was shown, by Pe'lczynski, not to have an unconditional
basis. Banach and Mazur asked whether every Banach space contains a closed
subspace with an unconditional Schauder basis. This problem was open for
a long time, but was answered in the negative by Gowers and Maurey in the
beginning of the 1990’s (see [9]).

1.2 The completeness assumption

We have already remarked that one important reason to assume completeness
of the normed linear space, is to be able to use the Baire category theorem for
the proof of the Open mapping theorem and the Uniform boundedness prin-
ciple. In a standard proof of the Open mapping theorem we use completeness
of the domain space and the possibility of using a category argument in the
range space. Rudin formulates the Open mapping theorem this way:

Theorem 1.2.1 (General Open mapping theorem). Let T be a linear,
bounded operator from a topological vector space X into a topological vector
space Y . Assume

(a) X is an F-space (the topology is induced by a complete invariant
metric)

(b) TX is of the second category in Y

Then
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(a) T is onto
(b) T maps open sets onto open sets
(c) Y is an F-space

The possibility of proving the Open mapping theorem when X and Y are
locally convex spaces has been studied by V. Pták in the fifties (see e.g. [14]).
His conclusion is that the domain space X has to be so-called B-complete (see
Definition 1.2.3), a property which coincides with completeness in the metric
case.

Definition 1.2.2. Let X and Y be topological vector spaces and let T : X →
Y .

(a) T is called nearly open if for every neighbourhood U of 0 in X, the
closure of TU is a neighbourhood of 0 in Y .

(b) T is called nearly continuous if for every neighbourhood V of 0 in Y ,
T−1(V ) is a neigbourhood of 0 in X.

The critical step in the proof of the classical Open mapping theorem is to
show that if X is complete, then a nearly open T : X → Y is already open.

Definition 1.2.3. A locally convex space X is called B-complete if, for every
locally convex space Y , every linear, continuous, nearly open T : X → Y is
open.

A special case of the Krein-Šmulian theorem (see Theorem 1.0.4(e)) is the

Theorem 1.2.4 (Banach-Dieudonné). Let X Be a Banach space and sup-
pose Y is a linear subspace of X∗. If Y ∩ BX∗ is weak-star closed, then Y is
weak-star closed.

One important observation Pták made was the following.

Theorem 1.2.5 (Pták). A locally convex space is B-complete if and only if
the Banach-Dieudonné theorem holds.

As already mentioned, for metric spaces, B-completeness coincides with
completeness. Today locally convex B-complete spaces are usually called Pták
spaces.

Using the general Open mapping theorem one can show the

Theorem 1.2.6 (Closed graph theorem, F-spaces). Let T be a linear,
bounded operator from an F-space X into an F-space Y . Assume T has a
closed graph in X × Y . Then T is continuous.

In this theorem, however, the completeness of X is not needed. In fact,
if X is a locally convex topological vector space, the above theorem is true
exactly when X is a barrelled space.
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Definition 1.2.7. Let X be a locally convex topological vector space. A barrell
is a subset A of X such that

(a) A is closed

(b) A is absolutely convex (balanced and convex)

(c) A is absorbing (A contains a line segment in every direction)

X is called barrelled if every barrell in X is a neighbourhood of the origin.

Note that every locally convex topological vector space has a base for
the topology at the origin, which is formed by barrells. The point is that
there might be more barrells. Barrelled spaces are well suited also for uni-
form boundedness principles. Let us first note that the bounded subsets of
L(X,Y ), X,Y topological vector spaces, are exactly the equicontinuous fam-
ilies of operators.

Theorem 1.2.8 (Corner stones, Barrelled spaces). Let X be a locally
convex topological vector space. The following statements are equivalent.

(a) X is barrelled

(b) For every locally convex topological vector space Y , every pointwise
bounded family H in L(X,Y ) is equicontinuous

(c) For every locally convex topological vector space Y , every linear T :
X → Y is nearly continuous.

(d) For every Frechet space (locally convex F-space) Y , every linear T :
X → Y with closed graph in X × Y is continuous

(e) For every Banach space Y , every linear T : X → Y with closed graph
in X × Y is continuous

We end this section by summing up in a theorem the corner stones of
Banach spaces in the setting of locally convex spaces:

Theorem 1.2.9. Let X and Y be locally convex topological vector spaces.
The following statements are valid.

(a) The dual separates convex, compact sets from convex, closed sets

(b) The Uniform boundedness principle is true exactly when X is bar-
relled

(c) If X is B-complete and Y is barrelled, any linear bounded T onto Y
is open

(d) If Y is B-complete and X is barrelled, the Closed graph theorem holds.

The completeness assumption assures that a Banach space X is both B-
complete and barrelled.
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1.3 Theory of closed, convex sets

Think of a cube in space. It has vertices, edges and faces. A common property
for these three subsets of the cube is that if a point is situated on a vertex,
an edge or a face, and lies on a line between two points in the cube, then the
endpoints of that line must be inside the vertex, edge or face. This simple
geometric idea is generalized to any vector space; we call all non-empty subsets
of a given set A with such a property as the vertex, the edge and the face
simply faces of A. In this terminology, an edge is a one-dimensional face and
a vertex is a face containing only one point. Instead of vertex, we use the
term extreme point. Let us state the formal definition.

Definition 1.3.1. Let A be a subset of a vector space. A subset F of A is
called a face of A if, whenever x, y ∈ A and λ > 0, µ > 0, λ + µ = 1 are
such that λx + µy ∈ F , then x, y ∈ F . A point e ∈ A is called extreme if
whenever x, y ∈ A and λ > 0, µ > 0, λ + µ = 1 are such that λx + µy = e,
then x = y = e.

Fundamental in functional analysis is the following discovery of Krein and
Milman:

Theorem 1.3.2 (The Krein-Milman theorem). Suppose A is a non-empty,
compact subset of a locally convex topological vector space X. Then A con-
tains an extreme point. If A in addition is convex, and E is the set of extreme
points of A, then

A = co(E).

Later Milman proved the following ”converse”:

Theorem 1.3.3 (Milman’s converse to the Krein-Milman theorem).
Suppose A is a compact, convex subset of a locally convex topological vector
space X and E is the set of extreme points of A. If F is any subset of A such
that

A = co(F ),

then every e ∈ E lies in the closure of F .

The cube in R
3 obviously fulfils both the assumption and the conclusion

of the Krein-Milman theorem. As we have remarked earlier, the unit ball
is no longer compact if the Banach space is infinite-dimensional. Also, the
Krein-Milman theorem does not in general hold for the unit ball of a Banach
space. As examples, the unit ball of L1[0, 1] has no extreme points. The unit
ball of CR[0, 1] has two extreme points, {±1}. The unit ball of l1 is the closed
convex hull of its extreme points, the same is true in l∞. The unit ball of the
space of regular Borel measures equipped vith variational norm, M [0, 1] has
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every ±δx : x ∈ [0, 1] as an extreme point, but is not the closed, convex hull of
its extreme points. However, by invoking Alaoglu’s theorem, it has to be the
weak-star closed, convex hull of its extreme points. Since the dual ball in any
reflexive space is weakly compact, and the norm closure and the weak closure
of convex sets coincide (see Theorem 1.0.3), unit balls of reflexive spaces are
the closed, convex hull of their extreme points.

l1 is not reflexive, but it is a separable dual space. Bessaga and Pe'lczynski
proved that in separable dual spaces closed, convex sets are always the closed
convex hull of the extreme points. Later on, spaces with such a property are
said to have the Krein-Milman property (KMP). The M [0, 1]-example shows
that not every dual space has the KMP.

The extreme points of the dual unit ball of a Banach space X is clearly a
James boundary for X. The Rainwater-Simons theorem (see Theorem 1.0.3)
was first proved (and published by Rainwater, a group of analysts in Seattle)
for this particular boundary, but Simons’ later research showed that in that
theorem extreme point structure had nothing to do with it.

The KMP gives a dichotomy of Banach spaces, but unfortunately no
equivalent formulation of that dichotomy is known. We will return to this
dichotomy in a moment, but first we have to explain the Radon-Nikodým
property. To do this we need some more geometrical concepts.

Let us again return to finite dimensions: Give R
2 the norm defined by a

unit ball which is put together the following way: Draw a straight line from
(−1, 1) to (1, 1) and from (−1,−1) to (1,−1). Then close the open ends with
half-circles. The resulting unit ball looks like a skating rink. Every point of
the half-circles are now extreme. A point e in a set A is called an exposed
point of A if there is a functional taking its maximum over A at e and nowhere
else in A. Geometrically, there is a unique tangent plane at e. Every exposed
point is clearly extreme, but not every extreme point need to be exposed. Just
look at the four points where the straight lines meet the half-circles. Here,
the tangent planes are not unique.

The extreme points of the unit ball of l∞ are all of the form (±1,±1, ...).
To any such extreme point, it is easy to find a unit vector in l1 which exposes.
This exposer is even weak-star continuous, so the extreme points of l∞ are all
weak-star exposed. The set of weak-star exposed points of the dual unit ball
is of some interest, since it has to be contained in any James boundary of X.

An exposed point e in a subset A of a normed space X is called strongly
exposed if, whenever f is an exposer of e and (xn) is a sequence in A such that
f(xn) → f(e), then ‖xn − e‖ → 0. If the strongly exposed point is exposed
by a weak-star continuous functional, it is called weak-star strongly exposed.

It was shown early that in a Banach space every norm-compact convex set
is the closed convex hull of its exposed points. However, this generalization
of the Krein-Milman theorem theorem can not be done in arbitrary locally
convex spaces. Returning to compact convex subsets of Banach spaces, it can
be seen that all exposed points are strongly exposed. The same is not true for
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weakly compact convex sets. It is therefore remarkable that Lindenstrauss in
the sixties proved

Theorem 1.3.4. A weakly compact, convex subset of a Banach space is the
closed convex hull of its strongly exposed points.

Even in a Hilbert space a weakly compact body can be found, having
only countably many strongly exposed points. Fonf [6] has shown that in
reflexive spaces, the set of exposed points of a closed convex body is always
uncountable. More on this will be commented in Chapter 3.

It turns out that Lindenstrauss’ theorem above is a special case of a deep
theorem of Bourgain:

Theorem 1.3.5. Let C be a closed bounded and convex subset of a Banach
space X. Suppose C has the Radon-Nikodým property. Then C is the closed
convex hull of its strongly exposed points.

We now explain the Radon-Nikodým property.

Definition 1.3.6. Let C be a closed, bounded and convex subset of a Banach
space X. C is said to have the Radon-Nikodým property (RNP) if the following
Radon-Nikodým theorem holds:

Let (Ω,Σ) be a measurable space, let F be an X-valued measure and µ
a probability measure on (Ω,Σ). Assume F (E)/µ(E) ∈ C for all µ-positive
A ∈ Σ. Then there is an f ∈ L1(µ,X) such that

F (E) =
∫
A
f(ω)dµ(ω)

for all A ∈ Σ.
The space X is said to have the RNP if its unit ball has the RNP.

The condition F (E)/µ(E) ∈ C for all µ-positive A ∈ Σ implies that F is
of bounded variation, that F � µ and that f ∈ L∞(µ,X) whenever it exists.

An important step towards a proof of Theorem 1.3.5 is to establish the
concept of dentability. First we need the simple idea of a slice. A slice of a
bounded, closed, convex set C is a subset S(C, x∗, α) defined by

S(C, x∗, α) =
{
y ∈ C : x∗(y) > sup

x∈C
x∗(x)− α

}
.

Here x∗ ∈ X∗ and α > 0. Geometrically, a slice is ”what is left of C above
the hyperplane”. An interesting thing is now to study what happens to the
diameter of the slices when α decreases to 0. As an example, look at the cube
in R

3. If the dividing hyperplane is parallel to an edge or a face (now using
geometrical terms), the diameter of the slices will remain 2, no matter how
small α is. If the dividing hyperplane is not parallel an edge or a face, the
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diameter of the slices decreases to 0 as α→ 0+, and the hyperplane ”leaves”
the cube at an extreme point. In Chapter 4 we prove that any slice of the
unit ball of a uniform algebra (e.g. every C(K)-space) has diameter 2!

Now, a bounded, closed, convex set C is called dentable if it has slices of
arbitrary small diameter. If a sequence of slices Sn is such that diam(Sn)→ 0
and a point y ∈ C lies in Sn for every n, then y is called a denting point of
C. Note that every denting point is extreme and also a point of continuity
for C (the identity is weak-norm continuous in the relative weak and norm
topologies on C). Lin, Lin and Trojanski [12] proved in 1988 that an extreme
point of a closed, bounded and convex set C in a Banach space is a denting
point of C excatly when it is a point of continuity for C.

If X has the RNP, then every closed, bounded, convex subset of X will
have to have the RNP. Thus, if X has the RNP it also has the KMP. Whether
the converse is true is a longstanding problem which goes back to the early
seventies. It has been proven, by Huff and Morris, that the KMP and the
RNP are equivalent in dual Banach spaces. Also the equivalence has been
established for large classes of Banach spaces not necessarily dual.

There is a stronger version of the Krein-Milman theorem valid for metriz-
able compact convex sets. In this case the set of extreme points is a Gδ, and
hence Borel-measurable.

Theorem 1.3.7 (Choquet’s theorem). Let C be a metrizable, compact,
convex subset of a locally convex topological vector space X. If x ∈ K, there
exists a regular probability Borel measure µ defined on K which is concen-
trated on the extreme points of K and with the property that given any affine,
continuous (in particular, linear continuous) f , then

f(x) =
∫
K
f(k) dµ(k).

We say that x is the barycenter of µ and that µ represents x if the above
identity is valid for all f ∈ X∗. It is not very difficult to show the following

Theorem 1.3.8. Let X be a locally convex topological vector space and C be
one of its compact, convex subsets. The following statements are equivalent:

(a) C is the closed convex hull of its extreme points (which is true by the
Krein-Milman theorem)

(b) Every point x of C is the barycenter of a regular probability Borel
measure supported on the closure of the extreme points of C

The set of extreme points is not a closed set in general, not even in the
metrizable case.

Throughout this dissertation we will use heavily concrete representation
of the described subsets of the extreme points of various sets.
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Chapter 2

Factorization of weakly
compact operators and the
approximation property

2.1 Introduction

Let us recall that a linear subspace F of a Banach space E is an ideal in E if
F⊥ is the kernel of a norm one projection in E∗. The notion of an ideal was
introduced and studied by Godefroy, Kalton, and Saphar in [14].

J. Johnson [20] proved that if X is a Banach space with the metric ap-
proximation property, then, for every Banach space Y , F(Y,X), the space of
finite rank operators from Y to X, is an ideal in L(Y,X), the space of bounded
operators from Y to X. Lima [23] has shown that the converse is true if X
has the Radon-Nikodým property. It is not known whether the converse is
true in general.

In [25], Lima and Oja proved thatX has the approximation property if and
only if F(Y,X) is an ideal in K(Y,X), the space of compact operators from
Y to X, for all Banach spaces Y . In fact, they showed something stronger: X
has the approximation property if (and only if) F(Y,X) is an ideal in K(Y,X)
for all separable reflexive spaces Y , or, equivalently, for all closed subspaces
Y of c0.

It is natural to ask what happens if we look at F(Y,X) as a subspace
of W(Y,X), the space of weakly compact operators from Y to X, instead of
looking at F(Y,X) as a subspace of K(Y,X). The answer to this question
is the main result of this paper: X has the approximation property if and
only if F(Y,X) is an ideal in W(Y,X) for all Banach spaces Y , which in
turn, is equivalent to the condition that, for every Banach space Y and every
T ∈ W(Y,X), there is a net (Tα) in F(Y,X) with supα ‖Tα‖ ≤ ‖T‖ such that
Tαy → Ty for all y ∈ Y .
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We depart from the remarkable factorization theorem due to Davis, Figiel,
Johnson, and Pe'lczyński [5] asserting that any weakly compact operator fac-
tors through a reflexive Banach space. In Section 2 (cf. Lemma 2.2.1), we
make a quantitative change in the Davis-Figiel-Johnson-Pe'lczyński construc-
tion which enables us to show, in Section 3, that one can factorize weakly
compact operators through reflexive Banach spaces isometrically and even
uniformly. In Theorem 2.2.2, we give a new characterization of the approx-
imation property in terms of the Davis-Figiel-Johnson-Pe'lczyński factoriza-
tion. We apply these results in Corollary 2.2.5 where we prove that X has the
approximation property if and only if every weakly compact operator into X
can be approximated in the strong operator topology by finite rank operators
whose norms are at most equal to the norm of the weakly compact operator.

In Section 3 (cf. Lemma 2.3.1), we show that on the absolutely convex
weakly compact set that is used in the factorization theorem of Davis, Figiel,
Johnson, and Pe'lczyński to construct the reflexive Banach space, the two
norm topologies coincide. (It was a part of the original construction that
the two weak topologies coincide on the unit ball of the reflexive Banach
space.) This, together with the quantitative modification of the Davis-Figiel-
Johnson-Pe'lczyński construction made in Section 2, leads us to an isometric
version of the Davis-Figiel-Johnson-Pe'lczyński factorization theorem (cf. The-
orem 2.3.2). This also applies to show that the isometric factorization can even
be uniform with respect to finite dimensional subspaces in the space of weakly
compact operators (cf. Theorem 2.3.3 and Corollaries 2.3.4 and 2.3.5).

We apply the uniform isometric factorization from Section 3 in Sections 4
and 5. Our main results in Section 4 are Theorem 2.4.3 and Theorem 2.4.4.
They characterize the approximation property of X and X∗ in terms of ideals
of finite rank operators. In particular, Theorem 2.4.3 shows that X has the
approximation property if and only if F(Y,X) is an ideal in W(Y,X) for all
Banach spaces Y , and Theorem 2.4.4 shows that X∗ has the approximation
property if and only if F(X,Y ) is an ideal in W(X,Y ) for all Banach spaces
Y .

In Section 5, an easy example shows that it is not possible to character-
ize the compact approximation property of X by K(Y,X) being an ideal in
W(Y,X) for all Y (although this property characterizes the compact approx-
imation property for reflexive X). In Theorem 2.5.1, we give some conditions
equivalent to K(Y,X) being an ideal in W(Y,X) for all Y . We also show, by
using the description of duals of spaces of compact operators due to Feder and
Saphar [12], that these conditions are implied by the compact approximation
property of X (cf. also Theorem 2.5.1).

In Theorems 2.6.1 and 2.6.2 of the final Section 6, we demonstrate how the
method of proof of Theorem 2.2.2 can be further developed to give alternative
proofs (through ideals of finite rank or compact operators) for known results
about cases when the (compact) approximation property implies the metric
(compact) approximation property. In particular, as an immediate corollary,
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we obtain the result due to Godefroy and Saphar [15] that X∗ has the metric
compact approximation property with conjugate operators whenever X∗ has
the compact approximation property with conjugate operators and X∗ or X∗∗

has the Radon-Nikodým property.

Let us fix some more notation. In a linear normed space X, we denote
the closed unit ball by BX and the closed ball with center x and radius r
by BX(x, r). For a set A ⊂ X, its norm closure is denoted by A, its linear
span by spanA, its convex hull by convA, and the set of its strongly exposed
points by sexpA.

We shall write KX (resp. WX) for the family of all compact (resp. weakly
compact) absolutely convex subsets of BX .

2.2 Criteria of the approximation property in terms

of the Davis-Figiel-Johnson-Pe(lczyński factor-
ization

In this section, we depart from the famous Davis, Figiel, Johnson, and Pe'lczyński
factorization construction (cf. Lemma 1 on p. 313 in [5], [6, pp. 160-161], [7,
p. 227], [33, p. 51] or Lemma 2.2.1 below) and apply the Grothendieck-
Feder-Saphar description of duals of spaces of compact operators (cf. [16]
or [8] and [12]) to obtain several conditions equivalent to the approximation
property of Banach spaces, all of them expressed in terms of the Davis-Figiel-
Johnson-Pe'lczyński construction (cf. Theorem 2.2.2 below). This leads us to
an interesting “metric” characterization of the approximation property (cf.
Corollary 2.2.5) similar to the well-known characterization of the metric ap-
proximation property as the denseness of BF(Y,X) in BL(Y,X) in the topology
of uniform convergence on compact sets, for all Banach spaces Y .

We shall need a quantitative version of the classical Davis, Figiel, Johnson,
Pe'lczyński factorization construction, which in fact consists in replacing the
number 2 in the original construction by

√
a for any a > 1. We now fix the

notation to describe the Davis-Figiel-Johnson-Pe'lczyński construction, and
we shall also use this notation in the following sections.

Let a > 1. Let X be a Banach space and let K be a closed absolutely
convex subset of its unit ball BX . For each n ∈ N = {1, 2, . . . }, put Bn =
an/2K+a−n/2BX and denote by ‖ ‖n the equivalent norm on X defined by the
gauge of Bn. Let ‖x‖K = (

∑∞
n=1 ‖x‖2n)1/2, XK = {x ∈ X : ‖x‖K < ∞} and

CK = {x ∈ X : ‖x‖K ≤ 1}. Further, let JK denote the identity embedding of
XK into X. Finally, we put

f(a) =

( ∞∑
n=1

an

(an + 1)2

)1/2
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and note that f : (1,∞) → R is a continuous, strictly decreasing function
with lima→1+ f(a) =∞ and lima→∞ f(a) = 0. Hence, there is a unique point
ã ∈ (1,∞) such that f(ã) = 1. (A “good” estimate of this ã is exp(4/9) =
1.55962349761....) For this ã, one has K ⊂ CK ⊂ BX (this is clear from
Lemma 2.2.1 below).

The following is the classical Davis-Figiel-Johnson-Pe'lczyński factorization
lemma with some “cosmetic” changes.

Lemma 2.2.1 (cf. p. 313 in [5]).
(i) K ⊂ f(a)CK .
(ii) XK is a Banach space with the closed unit ball CK , and JK ∈ L(XK ,X),

and ‖JK‖ ≤ 1/f(a).
(iii) J∗∗

K is injective.
(iv) XK is reflexive if and only if K is weakly compact.

Proof. Only (i) and ‖JK‖ ≤ 1/f(a) in (ii) need to be verified.
Suppose x ∈ K. Since x ∈ BX , we get

an/2x+ a−n/2x ∈ Bn,

so that

‖x‖n ≤ 1
an/2 + a−n/2

=
an/2

an + 1

for all n. Hence ‖x‖K ≤ f(a). This proves (i).
Since BX is convex and K ⊂ BX , we have

1
an/2 + a−n/2

(an/2K + a−n/2BX) ⊂ BX ,

that is

an/2

an + 1
Bn ⊂ BX .

Hence

‖x‖n ≥ an/2

an + 1
‖x‖

and therefore ‖x‖K ≥ f(a)‖x‖ for all x ∈ XK , meaning that ‖JK‖ ≤ 1/f(a).

Theorem 2.2.2. For a Banach space X, the following assertions are equiv-
alent.

(i) X has the approximation property.
(ii) F(XK ,X) is an ideal in L(XK ,X) for every K ∈ WX .
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(iii) For every K ∈ WX , there exists a net (Aα) in F(XK ,X) with
supα ‖Aα‖ ≤ ‖JK‖ such that Aαx −→

α
JKx for all x ∈ XK .

(iv) For every K ∈ WX , there exists a bounded net (Aα) in F(XK ,X)
such that Aαx −→

α
JKx for all x ∈ XK .

(v) For every K ∈ KX , there exists a net (Aα) in F(XK ,X) such that
‖Aα − JK‖ −→

α
0.

Remark 2.2.1. Condition (v) means that JK belongs to the norm closure of
F(XK ,X) in L(XK ,X) and (iii) can be viewed as its “metric” version: JK
belongs to the closure of the ball F(XK ,X)∩B(0, ‖JK‖) in the strong operator
topology of L(XK ,X).

For the proofs of Theorem 2.2.2 and Theorem 2.5.1, we shall need the
following well-known description of duals of spaces of compact operators due
to Feder and Saphar [12]. Let us recall that if X and Y are Banach spaces,
then for any v ∈ X∗⊗̂πY ∗∗, v =

∑∞
n=1 x

∗
n ⊗ y∗∗n with

∑∞
n=1 ‖x∗n‖‖y∗∗n ‖ < ∞,

and for any T ∈ L(Y,X), the element T ∗∗v ∈ X∗⊗̂πX∗∗ is defined by T ∗∗v =∑∞
n=1 x

∗
n ⊗ T ∗∗y∗∗n .

Lemma 2.2.3 (cf. [12, Theorem 1]). Let X and Y be Banach spaces such
that X∗ or Y ∗∗ has the Radon-Nikodým property. Let Φ: X∗⊗̂πY ∗∗ → L(Y,X)∗
be defined by

(Φv)(T ) = trace (T ∗∗v), T ∈ L(Y,X), v ∈ X∗⊗̂πY ∗∗.

Then, for all g ∈ K(Y,X)∗, there exists v ∈ X∗⊗̂πY ∗∗ such that g = (Φv)|K(Y,X)

and ‖g‖ = ‖Φv‖.

The proof of Theorem 2.2.2, as well as some other proofs of this paper,
will also use the following result.

Lemma 2.2.4. Let X and Y be Banach spaces. Let A be a subspace of
L(Y,X) containing F(Y,X) and let T ∈ L(Y,X). If A is an ideal in L :=
span (A∪{T}) and P is an ideal projection, then there exists a net (Aα) ⊂ A
with supα ‖Aα‖ ≤ ‖T‖ such that

y∗∗(A∗
αx

∗) −→
α
(P (y∗∗ ⊗ x∗))(T ) for all x∗ ∈ X∗ and y∗∗ ∈ Y ∗∗.

Moreover, if Y has the Radon-Nikodým property (in particular, if Y is reflex-
ive), then (Aα) can be chosen to satisfy

Aαy → Ty for all y ∈ Y.

Proof. Let P be a norm one projection on L∗ with kerP = A⊥. Since
P ∗(T ) ∈ A⊥⊥ ⊂ L∗∗ and ‖P ∗(T )‖ ≤ ‖T‖, there exists a net (Aα) ⊂ A
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with supα ‖Aα‖ ≤ ‖T‖ such that Aα → P ∗(T ) weak∗ in L∗∗. In particular,
for x∗ ∈ X∗ and y∗∗ ∈ Y ∗∗, we have

y∗∗(A∗
αx

∗) = (y∗∗ ⊗ x∗)(Aα) −→
α
(y∗∗ ⊗ x∗)(P ∗(T )) = (P (y∗∗ ⊗ x∗))(T ).

It is straightforward to verify that, for any f ∈ L∗, Pf is a norm-preserving
extension of f |A ∈ A∗. On the other hand, it is proved in [24, Lemma 3.4,
(b)] that y ⊗ x∗ ∈ F(Y,X)∗ has a unique norm-preserving extension to the
whole L(Y,X) whenever x∗ ∈ X∗ and y ∈ sexpBY . Therefore P (y ⊗ x∗) =
y ⊗ x∗ ∈ L∗ and

(A∗
αx

∗)(y) −→
α
(y ⊗ x∗)(T ) = (T ∗x∗)(y) for all x∗ ∈ X∗ and y ∈ sexpBY .

If Y has the Radon-Nikodým property, then Y = span (sexpBY ), and we get
that

(A∗
αx

∗)(y) −→
α
(T ∗x∗)(y) for all x∗ ∈ X∗ and y ∈ Y.

This means that Aα → T in the weak operator topology of L(Y,X). Since
the weak and strong operator topologies yield the same dual space (cf. e.g.
[9, Theorem VI.1.4]), after passing to convex combinations, we may assume
that Aα → T strongly.

Proof of Theorem 2.2.2. (i)⇒ (ii). Let us assume that X has the approxi-
mation property. We shall show that F(Y,X) is an ideal in L(Y,X) for any
reflexive Banach space Y .

Consider f ∈ L(Y,X)∗. For g = f |F(Y,X), let v =
∑∞
n=1 x

∗
n⊗yn ∈ X∗⊗̂πY

with
∑∞
n=1 ‖x∗n‖ < ∞ and ‖yn‖ → 0 be given by Lemma 2.2.3. We assume

that (Kα) ⊂ F(X,X) converges to IX uniformly on the compact subsets of
X. Then, for T ∈ L(Y,X),

|(Φv)(T )− f(KαT )| = |(Φv)(T −KαT )|

= |
∞∑
n=1

x∗n((T −KαT )yn)|

≤ sup
n
‖(IX −Kα)(Tyn)‖

∞∑
n=1

‖x∗n‖ −→α 0

because {0, T y1, T y2, . . . } is a compact subset of X. Since Φv ∈ L(Y,X)∗ is a
norm-preserving extension of f |F(Y,X), the mapping P : L(Y,X)∗ → L(Y,X)∗
defined by

(Pf)(T ) = lim
α

f(KαT ) = (Φv)(T ), f ∈ L(Y,X)∗, T ∈ L(Y,X),

is a norm one projection with kerP = F(Y,X)⊥.
(ii)⇒ (iii). This is immediate from Lemma 2.2.4 because XK is reflexive.
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(iii)⇒ (iv). This is obvious.
(iv)⇒ (v). Let K ∈ KX . Then JK ∈ K(XK ,X) because

JK(CK) = CK ⊂ an/2K + a−n/2BX , for all n ∈ N,

implies that JK(CK) has, for any ε > 0, a finite ε-net and therefore it is rela-
tively compact in X. By the description of the weak convergence in spaces of
compact operators due to Feder and Saphar [12, Corollary 1.2] (the reflexivity
of XK and the boundedness of (Aα) are used here), we get that (Aα−JK)→ 0
weakly in K(XK ,X). After passing to convex combinations, we may assume
that ‖Aα − JK‖ → 0.

(v)⇒ (i). Let K be a compact subset of X and let ε > 0. We have
to show that there is an operator T ∈ F(X,X) such that ‖Tx − x‖ < ε
for all x ∈ K. We may assume that K ∈ KX (note that, by a theorem
of Mazur, the absolutely convex hull of a compact set in a Banach space is
compact). By (v), there is an operator A =

∑n
i=1 y

∗
i ⊗ xi ∈ F(XK ,X) (with

y∗i ∈ X∗
K , xi ∈ X) such that ‖A − JK‖ < ε/2f(a). Since J∗∗

K is injective
(cf. Lemma 2.2.1), J∗

K(X
∗) is norm dense in X∗

K . Let x∗i ∈ X∗ satisfy
‖y∗i − J∗

Kx∗i ‖ < ε/2f(a)
∑n
i=1 ‖xi‖ and let T =

∑n
i=1 x

∗
i ⊗ xi ∈ F(X,X).

Then, for every x ∈ K (recall from Lemma 2.2.1 that K ⊂ f(a)CK ), we have

‖Tx− x‖ = ‖TJKx− JKx‖
≤ ‖A− JK‖‖x‖K + ‖TJK −A‖‖x‖K

<
ε

2
+ f(a)‖

n∑
i=1

(J∗
Kx∗i − y∗i )⊗ xi‖

≤ ε

2
+ f(a)

n∑
i=1

‖J∗
Kx∗i − y∗i ‖‖xi‖ <

ε

2
+

ε

2
= ε

Remark 2.2.2. A famous theorem due to Grothendieck [16] (cf. e.g. [26, p.
32]) asserts that X has the approximation property if and only if F(Y,X) =
K(Y,X) for all Banach spaces Y . Here the “only if” part is easy and straight-
forward (cf. e.g. [26, p. 32]). The “classical” proof of the “if” part relies
on Grothendieck’s characterization of a compact set as a subset of the closed
convex hull of a norm-null sequence (cf. e.g. [26, pp. 32-33]) which is used to
construct a Banach space Y - a linear subspace of X - such that the formal
identity map from Y into X is compact. The proof of the implication (v)⇒ (i)
above provides an alternative easier proof to the “if” part (whereXK together
with the identity map JK plays the role of Y ). And combined together with
Theorem (AP) in [25], this also gives an easy short proof for the classical fact
(due to Grothendieck) that X∗ has the approximation property if and only if
F(X,Y ) = K(X,Y ) for all Banach spaces Y .
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Remark 2.2.3. The idea to define a norm one projection with kerP = F(Y,X)⊥
on L(Y,X)∗ by (Pf)(T ) = limα f(KαT ), f ∈ L(Y,X)∗, T ∈ L(Y,X), when-
ever Kα ∈ BF(X,X) and Kα → IX , is due to J. Johnson [20]. In the proof of
the implication (i)⇒ (ii), the set of operators Kα is not necessarily bounded.

A Banach space X has the approximation property if and only if, for
every Banach space Y , the finite rank operators are dense in L(Y,X) in the
topology τ of uniform convergence on compact sets, and X has the metric
approximation property if and only if the “metric” version of this condition
holds: for every Banach space Y , the finite rank operators of norm ≤ 1 are
dense in the unit ball of L(Y,X) in the topology τ (cf. e.g. [26, pp. 32, 39]).
The next result provides a similar “metric” criterion for the approximation
property.

Corollary 2.2.5. For a Banach space X, the following assertions are equiv-
alent.

(i) X has the approximation property.
(ii) For every Banach space Y , BF(Y,X) is dense in BW(Y,X) in the strong

operator topology.
(iii) For every Banach space Y and every T ∈ W(Y,X), there is a net

(Tα) in F(Y,X) with supα ‖Tα‖ ≤ ‖T‖ such that Tαy → Ty for all
y ∈ Y .

(iv) For every separable reflexive Banach space Y and every T ∈ W(Y,X)
there is a sequence (Tn) in F(Y,X) with supn ‖Tn‖ ≤ ‖T‖ such that
Tny → Ty for all y ∈ Y .

Proof. (i)⇒ (iii). We may assume that ‖T‖ = 1. Then K := T (BY ) ∈ WX .
Let the number a be fixed so that f(a) = 1. Then (cf. Lemma 2.2.1) T (BY ) ⊂
CK = BXK

and ‖JK‖ ≤ 1. By Theorem 2.2.2 ((i)⇒ (iii)), there exists a net
(Aα) in F(XK ,X) with supα ‖Aα‖ ≤ 1 such that Aαx→ JKx for all x ∈ XK .
Define Tα : Y → X by Tαy = AαTy, y ∈ Y . Then Tα : Y → X is linear and
of finite rank, Tαy → Ty for all y ∈ Y , and ‖Tα‖ ≤ sup{‖Ty‖K : y ∈ BY } ≤ 1
for all α.

(iii)⇒ (ii). This is obvious.
(ii)⇒ (i). By Lemma 2.2.1, JK ∈ W(XK ,X) whenever K ∈ WX (because

XK is reflexive). Therefore, (ii) implies assertion (iv) of Theorem 2.2.2, which
is equivalent to (i).

(iii)⇒(iv). Let Y be a separable Banach space and let T ∈ W(Y,X). Let
(yn) be a dense sequence in BY . By a standard argument, picking from the
given net (Tα), for each n = 1, 2, . . . , operators Tαn so that ‖Tαny1 − Ty1‖ <
1/n, . . . , ‖Tαnyn−Tyn‖ < 1/n, one obtains the desired sequence (Tn) = (Tαn).

(iv)⇒(i). Let Z be any reflexive Banach space and let T ∈ W(Z,X).
Recall that every separable subspace of Z is contained in a separable 1-
complemented subspace Y of Z, meaning that there exists a norm one pro-
jection PY from Z onto Y (this so-called “separable 1-complementation prop-
erty” is shared by all weakly compactly generated spaces (cf. [1] or e.g.
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[6, p. 149])). Therefore the set of all triples α = (F, Y, ε), where F is
a finite dimensional subspace of Z, Y is a separable 1-complemented sub-
space of Z containing F , and ε > 0, is a directed set in the natural way.
For any α = (F, Y, ε), considering T |Y ∈ W(Y,X), we choose an operator
Tε ∈ F(Y,X) with ‖Tε‖ ≤ ‖T |Y ‖ such that ‖Tεy − Ty‖ < ε for all y ∈ BF
and let Tα = Tε ◦ PY . Then (Tα) ⊂ F(Z,X) satisfies supα ‖Tα‖ ≤ ‖T‖ and
Tαz → Tz for all z ∈ Z. In particular, this gives assertion (iii) of Theo-
rem 2.2.2 which is equivalent to (i).

Remark 2.2.4. Concerning the implication (i)⇒ (ii) of Corollary 2.2.5, we
note that, by a result due to Grothendieck [16, Corollary 2, p. 141], the
approximation property of the dual space X∗ implies condition (ii) of Corol-
lary 2.2.5. We are grateful to the Referee for pointing out this for us. Grothendieck’s
proof relies on his theorem stating that if A and B are, respectively, integral
and weakly compact operators, then A ◦ B is a nuclear operator with the
nuclear norm not greater than ‖B‖ multiplied by the integral norm of A.

2.3 Uniform isometric factorization

The remarkable factorization theorem due to Davies, Figiel, Johnson, and
Pe'lczyński [5] asserts that any weakly compact operator T factors through
a reflexive space. In this case, if we write T = A ◦ B, it is clear that the
operators A and B are weakly compact. By a theorem of Figiel and Johnson
([13] and [21]), if T is a compact operator, then it admits a factorization
T = A ◦B where A and B are compact. (This fact can also be deduced from
the Davis-Figiel-Johnson-Pe'lczyński theorem (cf. e.g. [19, p. 374]).)

In Theorem 2.3.2 below, we shall see that the quantitative modification in
the Davis-Figiel-Johnson-Pe'lczyński construction made in Section 2, together
with the following Lemma 2.3.1, leads to an isometric factorization in the
Davis-Figiel-Johnson-Pe'lczyński and the Figiel-Johnson theorems. (In partic-
ular, if ‖T‖ = 1, then ‖A‖ = ‖B‖ = 1; the estimates from [33, p. 51] would
give ‖A‖, ‖B‖ ≤ 4.)

Lemma 2.3.1 (Lemma 2.2.1 continued).

(i) For x ∈ K, one has

‖x‖2K ≤ (
1
4
+

1
ln a

)‖x‖.

(ii) The X-norm and XK-norm topologies coincide on K.
(iii) The weak topologies defined by X∗ and X∗

K coincide on CK .
(iv) CK as a subset of X is compact, weakly compact, or separable if and

only if K has the same property.
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Proof. (i) Let x ∈ K, x �= 0. Then we have

an/2x+ a−n/2
x

‖x‖ ∈ Bn,

so that

‖x‖2K ≤
∞∑
n=1

1
(an/2 + a−n/2‖x‖−1)2

= ‖x‖
∞∑
n=1

an‖x‖
(an‖x‖+ 1)2 .

Let h(t) = at‖x‖/(at‖x‖+ 1)2, 1 ≤ t <∞. The graph of h has a bell-shaped
form and maxh(t) = 1/4. Let k ∈ N be such that

h(1) ≤ h(2) ≤ · · · ≤ h(k − 1) ≤ h(k) ≥ h(k + 1) ≥ · · · .

Then

‖x‖2K
‖x‖ ≤

∞∑
n=1

h(n) ≤ h(k) +
∫ ∞

1
h(t) dt

≤ 1
4
+

1
ln a

∫ ∞

1+a‖x‖

du

u2

=
1
4
+

1
ln a

(
1

1 + a‖x‖
)
≤ 1
4
+

1
ln a

.

(ii) For x, y ∈ K, we have x−y2 ∈ K. By (i),

‖x− y‖2K ≤ (
1
2
+

2
ln a

)‖x− y‖.

This together with (ii) in Lemma 2.2.1 gives (ii).
(iii) This is proved in [5].
(iv) This is essentially known (cf. [5] or [7, p. 228]) and follows from the

inclusions (f(a))−1K ⊂ CK ⊂ an/2K + a−n/2BX , for all n, and from the fact
that CK =

⋂∞
n=1{x ∈ X :

∑n
k=1 ‖x‖2k ≤ 1} is closed and weakly closed.

Theorem 2.3.2. Suppose T ∈ L(Y,X). Let K = T (BY (0, 1/‖T‖)) and let
TK : Y → XK be defined by TKy = Ty, y ∈ Y . Then T = JK ◦ TK and

(i) T is separably valued, weakly compact, compact, or of finite rank if
and only if TK has the same property if and only if JK has the same
property.

(ii) ‖T‖ = ‖TK‖ and ‖JK‖ = 1 whenever f(a) = 1.

Proof. (i) We only need to prove that the above-mentioned properties of T
imply the same properties for TK and JK . Since TK is algebraically the same
operator as T , they have the same rank and, by Lemma 2.3.1, (ii) and (iii),
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TK is separably valued, compact, or weakly compact whenever T is. If T is
of finite rank, then JK has finite rank since

JK(BXK
) = CK ⊂

∞⋂
n=1

(T (Y ) + a−n/2BX) = T (Y ) = T (Y ).

That the other properties of T imply the same properties for JK , it is clear
from Lemma 2.3.1, (iv).

(ii) If f(a) = 1, then ‖JK‖ ≤ 1 by Lemma 2.2.1, (ii). Without loss of
generality, we may assume that ‖T‖ = 1. Since K ⊂ CK (cf. Lemma 2.2.1),
(i), we get ‖TK‖ = supy∈BY

‖Ty‖K ≤ supz∈K ‖z‖K ≤ supz∈CK
‖z‖K = 1.

But then

1 = ‖T‖ = ‖JK ◦ TK‖ ≤ ‖JK‖‖TK‖ ≤ min{‖TK‖, ‖JK‖}.

Therefore ‖TK‖ = ‖JK‖ = 1.
By developing the method of proof of Theorem 2.3.2, we shall show (cf.

Theorem 2.3.3 and Corollaries 2.3.4 and 2.3.5) that the isometric factorization
can even be uniform with respect to finite dimensional subspaces in the space
of weakly compact operators.

Theorem 2.3.3. Let F be a finite dimensional subspace of W(Y,X). Then
there exist a reflexive space Z, a norm one operator J : Z → X, and a linear
isometry Φ: F →W(Y,Z) such that T = J ◦Φ(T ) for all T ∈ F . Moreover,

(i) Z = XK and J = JK for some K ∈ WX whenever the number a is
fixed so that f(a) = 1,

(ii) T is compact if and only if Φ(T ) is compact,
(iii) T has finite rank if and only if Φ(T ) has finite rank.

Proof. Let K = conv{Ty : T ∈ BF and y ∈ BY }. Then K is a weakly closed
absolutely convex subset of BX . We shall use Grothendieck’s lemma (cf.
e.g. [7, p. 227]) to show that K is weakly compact. For given ε > 0, let
{T1, . . . , Tn} be an ε/2-net of BF . Let Kε be the closed convex hull of the
weakly compact set T1(BY ) ∪ . . . ∪ Tn(BY ). By the Krein-Šmulian theorem,
Kε is weakly compact. Since K ⊂ Kε + εBX , the weak compactness of K
follows from Grothendieck’s lemma.

Choose a such that f(a) = 1. Put Z = XK , J = JK , and define Φ: F →
W(Y,Z) by Φ(T )y = Ty, y ∈ Y . Then Z is reflexive (since K is weakly
compact), Φ is linear, and T = J ◦ Φ(T ) for all T ∈ F . As in the proof of
Theorem 2.3.2, we show (i) and (ii), and we also obtain that ‖Φ(T )‖ = 1,
whenever ‖T‖ = 1, and that ‖J‖ = 1.
Remark 2.3.1. The proof of Theorem 2.3.3 shows how norm compact sets in
the space of weakly compact operators can be uniformly and isometrically
factorized.
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Corollary 2.3.4. Let F be a finite dimensional subspace of W(X,Y ). Then
there exist a reflexive space Z, a norm one operator J : X → Z, and a linear
isometry Φ: F →W(Z, Y ) such that T = Φ(T ) ◦ J for all T ∈ F . Moreover,

(i) T is compact if and only if Φ(T ) is compact,
(ii) T has finite rank if and only if Φ(T ) has finite rank.

Proof. Let us consider the finite dimensional subspace G = {T ∗ : T ∈ F} of
W(Y ∗,X∗). By Theorem 2.3.3, there exist a reflexive space Z, a norm one
operator I : Z∗ → X∗, and a linear isometry Ψ: G→W(Y ∗, Z∗) so that T ∗ =
I ◦Ψ(T ∗) for all T ∈ F . Put J = I∗|X and define Φ(T ) = (Ψ(T ∗))∗ for T ∈ F .
Since T ∗∗|X = T whenever T ∈ F , we have T = Φ(T )◦J and Φ(T ) ∈ W(Z, Y )
for all T ∈ F . Moreover, ‖Φ(T )‖ = ‖(Ψ(T ∗))∗‖ = ‖Ψ(T ∗)‖ = ‖T ∗‖ = ‖T‖ for
T ∈ F . The linearity of Φ and properties (i) and (ii) are also clear from the
definition of Φ. Finally, it is easily seen that ‖J‖ = 1.

Corollary 2.3.4 will be applied in the next section to prove that F(Y,X)
is an ideal in W(Y,X) for all Banach spaces Y whenever X has the approxi-
mation property. We conclude this section with an immediate corollary from
Theorem 2.3.3 and Corollary 2.3.4.

Corollary 2.3.5. For every finite dimensional subspace F of W(X,Y ), there
exist reflexive spaces Z and W , norm one operators J : X → Z and I : W →
Y , and a linear isometry Φ: F →W(Z,W ) such that T = I ◦Φ(T ) ◦J for all
T ∈ F .

2.4 The approximation property and ideals of finite

rank operators

In this section, our main objective is to prove that a Banach space X has the
approximation property if and only if F(Y,X) is an ideal in W(Y,X) for all
Banach spaces Y (see Theorem 2.4.3 below which also lists other criteria of the
approximation property in terms of ideals of finite rank operators). In fact,
we have already proved (see Theorem 2.2.2 and the proof of its implication
(i)⇒(ii)) that X has the approximation property if and only if F(Y,X) is an
ideal in W(Y,X) for all reflexive Banach spaces Y . The next result extends
this assertion from reflexive spaces to all Banach spaces.

Theorem 2.4.1. Let X be a Banach space. Then F(Y,X) (resp. K(Y,X))
is an ideal in W(Y,X) for all Banach spaces Y if and only if F(Z,X) (resp.
K(Z,X)) is an ideal in W(Z,X) for all reflexive spaces Z.

The proof of Theorem 2.4.1 will use the uniform isometric factorization of
weakly compact operators from Section 3 and the following alternative charac-
terization of ideals (proved e.g. in Lima [23], Fakhoury [11], and Kalton [22]).

36



Theorem 2.4.2. Let F be a closed subspace of a Banach space E. The fol-
lowing statements are equivalent.

(i) F is an ideal in E.
(ii) F is locally 1-complemented in E, i.e. for every finite dimensional

subspace G of E and for all ε > 0, there is an operator A : G → F
such that ‖A‖ < 1 + ε and Ax = x for all x ∈ G ∩ F .

Remark 2.4.1. It is straightforward to verify that the condition Ax = x for all
x ∈ G∩F in Theorem 2.4.2 can be replaced by ‖Ax−x‖ ≤ ε for all x ∈ BG∩F .

Let us recall that, for a linear subspace F of a Banach space E (as it is
clear from the definition of the ideal), F is an ideal in E if and only if F is an
ideal in E.

Proof of Theorem 2.4.1. We shall first consider the case of ideals of compact
operators. Let K(Z,X) be an ideal inW(Z,X) for all reflexive Banach spaces
Z. For a Banach space Y , let G be a finite dimensional subspace of W(Y,X)
and let ε > 0. By Corollary 2.3.4, we can find a reflexive space Z, a norm one
operator J : Y → Z, and an isometry Φ taking G intoW(Z,X) and preserving
compact operators such that T = Φ(T )◦J for T ∈ G. By Theorem 2.4.2, there
is an operator A : Φ(G) → K(Z,X) which “locally 1-complements” K(Z,X)
in W(Z,X). Then B : G → K(Y,X) defined by B(T ) = A(Φ(T )) ◦ J , T ∈
G,“locally 1-complements” K(Y,X) inW(Y,X). This proves the claim about
compact operators.

Now, if F(Z,X) is an ideal in W(Z,X) for all reflexive spaces Z, then,
as we mentioned above, X has the approximation property. Consequently,
F(Y,X) = K(Y,X) for all Banach spaces Y (cf. e.g. Remark 2.2.2). There-
fore, by the first part of the proof, F(Y,X) is an ideal in W(Y,X) for all
Banach spaces Y .

Remark 2.4.2. The assertion of Theorem 2.4.1 concerning ideals of finite rank
operators can also be proved similarly to the case of ideals of compact opera-
tors in Theorem 2.4.1, using that the isometry from Corollary 2.3.4 preserves
finite rank operators. However, in this case, one should apply Remark 2.4.1
and notice that the condition from Remark 2.4.1 works also for subspaces F
which are not necessarily closed.

In the next result, we summarize criteria of the approximation property
expressed in termes of ideals of finite rank operators obtained in this paper
and in the paper [25] by Lima and Oja.

Theorem 2.4.3. Let X be a Banach space. The following statements are
equivalent.

(i) X has the approximation property.
(ii) F(Y,X) is an ideal in W(Y,X) for all Banach spaces Y .
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(iii) F(Y,X) is an ideal in W(Y,X) for all separable reflexive Banach
spaces Y .

(iv) F(Y,X) is an ideal in W(Y,X) for all closed subspaces Y ⊂ c0.
(v) F(Y,X) is an ideal in K(Y,X) for all Banach spaces Y .
(vi) F(Y,X) is an ideal in K(Y,X) for all separable reflexive Banach

spaces Y .
(vii) F(Y,X) is an ideal in K(Y,X) for all closed subspaces Y ⊂ c0.

Proof. The equivalence (i)⇔ (ii) has just been proved above. The implications
(vi)⇒ (i) and (vii)⇒ (i) are proved in [25, Theorem 2.6.1]. The other required
implications (e.g. (ii)⇒ (v)⇒ (vi)& (vii)) are obvious.

In the paper [25] by Lima and Oja, it was proved that interchanging the
roles of X and Y in statements (v), (vi), and (vii) of Theorem 2.4.3 gives
conditions equivalent to the approximation property of X∗. This result will
be used and extended in the following symmetric version of Theorem 2.4.3.

Theorem 2.4.4. The following statements are equivalent:
(i) X∗ has the approximation property.
(ii) F(X,Y ) is an ideal in W(X,Y ) for all Banach spaces Y .
(iii) F(X,Y ) is an ideal in W(X,Y ) for all separable reflexive Banach

spaces Y .
(iv) F(X,Y ) is an ideal in W(X,Y ) for all closed subspaces Y ⊂ c0.
(v) F(X,Y ) is an ideal in K(X,Y ) for all Banach spaces Y .
(vi) F(X,Y ) is an ideal in K(X,Y ) for all separable reflexive Banach

spaces Y .
(vii) F(X,Y ) is an ideal in K(X,Y ) for all closed subspaces Y ⊂ c0.

Let us recall that, by a fundamental result due to Grothendieck [16] (cf.
e.g. [26, p. 33]), X∗ has the approximation property if and only if F(X,Y ) =
K(X,Y ) for all Banach spaces Y .

In the proof of Theorem 2.4.4, we shall need the following symmetric
version of Theorem 2.4.1.

Theorem 2.4.5. Let X be a Banach space. Then F(X,Y ) (resp. K(X,Y ))
is an ideal in W(X,Y ) for all Banach spaces Y if and only if F(X,Z) (resp.
K(X,Z)) is an ideal in W(X,Z) for all reflexive Banach spaces Z.

Proof. The case of compact operators can be proved as in Theorem 2.4.1 by
applying Theorem 2.3.3 instead of Corollary 2.3.4.

Let F(X,Z) be an ideal in W(X,Z) for all reflexive spaces Z. Then,
by the natural isometry T → T ∗|X between W(Z∗,X∗) and W(X,Z), we
have that F(Y,X∗) is an ideal in W(Y,X∗) for all reflexive Banach spaces Y ,
meaning that X∗ has the approximation property. Therefore, as we recalled
above, F(X,Y ) = K(X,Y ) for all Banach spaces Y . And the already proved
case of compact operators implies that F(X,Y ) is an ideal in W(X,Y ) for all
Banach spaces Y .
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Proof of Theorem 2.4.4. The equivalence (i)⇔ (ii) is clear from Theorem 2.4.5
and its proof. The implications (vi)⇒ (i) and (vii)⇒ (i) are proved in [25,
Theorem 5.2], and the other required implications are obvious.

2.5 The compact approximation property and ideals

of compact operators

Replacing the finite rank operators by compact operators gives the definition
of the compact approximation property: one says that a Banach space X
has the compact approximation property (resp. the metric compact
approximation property) if IX belongs to the closure of K(X,X) (resp.
BK(X,X)) with respect to the topology of uniform convergence on compact
subsets in X. It is known that even the metric compact approximation prop-
erty does not imply the approximation property [32].

By the previous section, X has the approximation property if and only if
F(Y,X) is an ideal in W(Y,X) for all Banach spaces Y . We shall show that
one can replace finite rank operators by compact operators in the “only if”
part of this characterization (cf. Theorem 2.5.1), but one cannot do this in
the “if” part (cf. the following example).

Example 2.5.1. There is a Banach space X without the compact approxima-
tion property such that K(Y,X) =W(Y,X) (i.e. K(Y,X) is trivially an ideal
in W(Y,X)) for all Banach spaces Y .

Let X be a closed subspace of 91 without the compact approximation
property (cf. [31] or e.g. [27, p. 107]). If T ∈ W(Y,X) for a Banach space Y ,
then by the Eberlein-Šmulian theorem and the Schur property of 91, it follows
that T is compact.

Theorem 2.5.1. Let X be a Banach space and let the number a be fixed so
that f(a) = 1. The following assertions are equivalent and they hold whenever
X has the compact approximation property.

(a) K(Y,X) is an ideal in W(Y,X) for all Banach spaces Y .
(b) K(Y,X) is an ideal in W(Y,X) for all separable reflexive Banach

spaces Y .
(c) K(XK ,X) is an ideal in span(K(XK ,X)∪{JK}) for every K ∈ WX .
(d) For every Banach space Y and every T ∈ W(Y,X), there is a net

(Tα) in K(Y,X) with supα ‖Tα‖ ≤ ‖T‖ such that Tαy −→
α

Ty for all
y ∈ Y .

(e) For every separable reflexive Banach space Y and every T ∈ W(Y,X),
there is a sequence (Tn) in K(Y,X) with supn ‖Tn‖ ≤ ‖T‖ such that
Tny −→

n
Ty for all y ∈ Y .

(f) For every K ∈ WX , there is a net (Aα) in BK(XK ,X) such that Aαx −→
α

JKx for all x ∈ XK .
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Proof. The implications (a)⇒ (b), (a)⇒ (c), and (d)⇒ (f) are obvious. The
implications (c)⇒ (f) and (b)⇒ (e) are immediate from Lemma 2.2.4 (for
(b)⇒ (e), one should also use the standard argument from the proof of (iii)⇒
(iv) in Corollary 2.2.5). The proofs of (e)⇒ (f) and (f)⇒ (d) are essentially
the same as, respectively, the proofs of (iv)⇒ (i) and (i)⇒ (iii) in Corol-
lary 2.2.5.

(f)⇒ (a). We shall apply Theorem 2.4.2 together with Remark 2.4.1 to
show that K(Y,X) is an ideal in W(Y,X). Let G be a finite dimensional
subspace of W(Y,X) and let ε > 0. By Theorem 2.3.3, there exist K ∈ WX

and a linear isometry Φ: G →W(Y,XK) preserving compact operators such
that T = JK ◦ Φ(T ) for all T ∈ G. Let a net (Aα) in BK(XK ,X) satisfy
‖(Aα−JK)x‖ −→

α
0 for all x ∈ XK . Since {Φ(T )y : T ∈ BG∩K(Y,X), y ∈ BY } is

a relatively compact subset of XK , there is an α so that ‖(Aα−JK)Φ(T )y‖ ≤ ε
for all T ∈ BG∩K(Y,X) and y ∈ BY . This means that ‖Aα ◦ Φ(T ) − T‖ ≤ ε
for all T ∈ BG∩K(Y,X). And denoting A(T ) = Aα ◦ Φ(T ), T ∈ G, we get an
operator A : G→ K(Y,X) as desired.

Finally, let us assume that X has the compact approximation property.
Replacing F(Y,X) by K(Y,X) and F(X,X) by K(X,X) in the proof of
the implication (i)⇒ (ii) of Theorem 2.2.2 shows that K(Y,X) is an ideal
in W(Y,X) for any reflexive Banach space Y .

Remark 2.5.1. Since XK is reflexive whenever K ∈ WX , Theorem 2.4.1 im-
mediately follows from Lemma 2.2.4 and the implication (f)⇒ (a) of Theo-
rem 2.5.1. However, the proof of Theorem 2.4.1 we gave in Section 4 is easier
and more direct.

Remark 2.5.2. As we saw above, F(Y,X) is an ideal inW(Y,X) for all Banach
spaces Y whenever there exists a number a > 1 so that F(XK ,X) is an ideal in
W(XK ,X) for all K ∈ WX . By Theorem 2.5.1, (c)⇒(a), the similar assertion
for compact operators holds for the number a for which f(a) = 1.

We say that a Banach space X has theweakly compact approximation
property if IX belongs to the closure ofW(X,X) with respect to the topology
of uniform convergence on compact subsets in X. This notion was considered
by Reinov [30] and by Grønbæk and Willis [17]. Note that Astala and Tylli
[2] use this notion when IX belongs to the closure of W(X,X) with respect
to the topology of uniform convergence on weakly compact subsets in X.

Corollary 2.5.2. The assertions of Theorem 2.5.1 are equivalent to the com-
pact approximation property of X whenever X has the weakly compact approx-
imation property.

Proof. Let K ∈ KX , let ε > 0, and choose T ∈ W(X,X) such that ‖Tx−x‖ <
ε/2 for all x ∈ K. By assertion (d) of Theorem 2.5.1, there is a bounded net
(Tα) in K(X,X) such that Tαx → Tx for all x ∈ X. By compactness of K,
supx∈K ‖Tαx− Tx‖ → 0 and therefore supx∈K ‖Tαx− x‖ < ε for some α.
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Remark 2.5.3. Corollary 2.5.2 applies, in particular, to Banach spaces X
which are reflexive. However in this case, the assertions of Theorem 2.5.1
are equivalent to the metric compact approximation property of X and also
to the fact that K(X,X) is an ideal in W(X,X) (cf. [23, Theorem 14]).

Corollary 2.5.3. Let X be a Banach space and let the number a be fixed so
that f(a) = 1. The following assertions are equivalent and they hold whenever
X∗ has the compact approximation property.

(a) K(X,Y ) is an ideal in W(X,Y ) for all Banach spaces Y .
(b) K(X,Y ) is an ideal in W(X,Y ) for all separable reflexive Banach

spaces Y .
(c) For every Banach space Y and every T ∈ W(X,Y ), there is a net

(Tα) in K(X,Y ) with supα ‖Tα‖ ≤ ‖T‖ such that T ∗
αy

∗ −→
α

T ∗y∗ for
all y∗ ∈ Y ∗.

(d) For every separable reflexive Banach space Y and every T ∈ W(X,Y ),
there is a sequence (Tn) in K(X,Y ) with supn ‖Tn‖ ≤ ‖T‖ such that
T ∗
ny

∗ −→
n

T ∗y∗ for all y∗ ∈ Y ∗.

Proof. We shall use the natural isometry T → T ∗|X between W(Z∗,X∗) and
W(X,Z) for reflexive Banach spaces Z. By this isometry, K(X,Y ) is an ideal
in W(X,Y ) for all reflexive Banach spaces Y if and only if K(Y,X∗) is an
ideal inW(Y,X∗) for all reflexive Banach spaces Y . Applying Theorems 2.4.5
and 2.4.1, this yields the equivalence of (a) to condition (a) of Theorem 2.5.1
for X∗. Furthermore, by the same isometry, (b) and (d) are respectively
equivalent to conditions (b) and (e) of Theorem 2.5.1 for X∗, (c) implies
condition (d) of Theorem 2.5.1 forX∗ which, in its turn, implies the particular
case of (c) where Y is assumed to be reflexive. Hence, by Theorem 2.5.1,
(c)⇒(a)⇔ (b)⇔ (d), the last equivalent conditions hold whenever X∗ has the
compact approximation property, and they imply the particular case of (c)
with reflexive Y . To finish the proof, we have to show that this particular case
of (c) actually implies (c). Let Y be a Banach space and let T ∈ W(X,Y ).
Let K, YK , TK , and JK be as in Theorem 2.3.2. Since K is weakly compact,
YK is reflexive. Hence, for TK ∈ W(X,YK), there is a net (Sα) in K(X,YK)
with supα ‖Sα‖ ≤ ‖TK‖ = ‖T‖ such that S∗

αz
∗ −→
α

T ∗
Kz∗ for all z∗ ∈ Y ∗

K . Since

‖JK‖ = 1, the net Tα = JK ◦ Sα clearly satisfies what is needed.

2.6 From approximation properties to metric ap-

proximation properties

We would like to demonstrate how the method of proof of Theorem 2.2.2 can
be further developed to give alternative proofs for known results about cases
when the (compact) approximation property implies the metric (compact)
approximation property. (Note that the following results could have been
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obtained already in Section 2, but by their nature, they fit more properly to
conclude this paper.)

The dual space X∗ of a Banach space X is said to have the compact
approximation property with conjugate operators if IX∗ belongs to
the closure of {K∗ : K ∈ K(X,X)} with respect to the topology of uniform
convergence on compact subsets of X∗. By an example due to Grønbæk
and Willis [17], the compact approximation property of X∗ does not imply
the compact approximation property with conjugate operators. Moreover,
Casazza and Jarchow [3] have shown that there is a Banach space X failing
the metric compact approximation property such that all its duals X∗, X∗∗,
. . . have the metric compact approximation property. Let us recall that if
X∗ has the approximation property, then X∗ has the approximation property
with conjugate operators (this is clear from the local reflexivity principle).

The following two results will explain surprisingly well why, in certain
important cases, the (compact) approximation property implies the metric
(compact) approximation property.

Theorem 2.6.1. Let X and Y be Banach spaces such that Y ∗ or X∗∗ has
the Radon-Nikodým property. If X∗ has the compact approximation property
with conjugate operators, then K(X,Y ) is an ideal in L(X,Y ) with an ideal
projection P such that

P (x∗∗ ⊗ y∗) = x∗∗ ⊗ y∗ for all y∗ ∈ Y ∗ and x∗∗ ∈ X∗∗.

Proof. We assume that (K∗
α) with Kα ∈ K(X,X) converges to IX∗ uniformly

on compact subsets of X∗. Similarly to the proof of Theorem 2.2.2, we can
define an ideal projection P by

(Pf)(T ) = lim
α

f(TKα), f ∈ L(X,Y )∗, T ∈ L(X,Y ). (∗)

In particular, for f = x∗∗ ⊗ y∗ and T ∈ L(X,Y ), this implies

(P (x∗∗ ⊗ y∗))(T ) = lim
α

x∗∗(K∗
αT

∗y∗) = x∗∗(T ∗y∗) = (x∗∗ ⊗ y∗)(T ).

Theorem 2.6.2. Let X be a Banach space. The following statements are
equivalent.

(a) X∗ has the metric compact approximation property with conjugate
operators.

(b) For all Banach spaces Y , K(X,Y ) is an ideal in L(X,Y ) with an
ideal projection P such that

P (x∗∗ ⊗ y∗) = x∗∗ ⊗ y∗ for all y∗ ∈ Y ∗ and x∗∗ ∈ X∗∗.
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(c) K(X,X) is an ideal in span (K(X,X) ∪ {I}) with an ideal projection
P such that

P (x∗∗ ⊗ x∗) = x∗∗ ⊗ x∗ for all x∗ ∈ X∗ and x∗∗ ∈ X∗∗.

Proof. (a)⇒ (b). Let (Kα) be a net in BK(X,X) such that K∗
αx

∗ → x∗ for all
x∗ ∈ X∗. Applying a well-known result due to J. Johnson [20], by passing
to a subnet of (Kα), one can define an ideal projection P by (∗). As in the
proof of Theorem 2.6.1, we have P (x∗∗ ⊗ y∗) = x∗∗ ⊗ y∗ for all y∗ ∈ Y ∗ and
x∗∗ ∈ X∗∗.

(b)⇒ (c). This is obvious.
(c)⇒ (a). By Lemma 2.2.4, there exists a net (Kα) in BK(X,X) such that

x∗∗(K∗
αx

∗) −→
α

P (x∗∗ ⊗ x∗)(IX) = (x∗∗ ⊗ x∗)(IX) = x∗∗(x∗)

for all x∗ ∈ X∗ and x∗∗ ∈ X∗∗. Thus K∗
α → IX∗ in the weak operator

topology of L(X∗,X∗). Since the weak and strong operator topologies yield
the same dual space, after passing to convex combinations, we may assume
that K∗

α → IX∗ in the strong operator topology.

As an immediate corollary of Theorems 2.6.1 and 2.6.2, we obtain the
following result due to Godefroy and Saphar [15].

Corollary 2.6.3 (cf. [15, Corollary 1.6]). Let X be a Banach space such
that X∗ or X∗∗ has the Radon-Nikodým property. If X∗ has the compact ap-
proximation property with conjugate operators, then X∗ has the metric com-
pact approximation property with conjugate operators.

Remark 2.6.1. The original proof of Corollary 2.6.3 due to Godefroy and
Saphar [15] was also based, like ours, on Lemma 2.2.3, but by using the
local reflexivity principle, it was modeled after Grothendieck’s classical proof
in [16]. Another proof of Corollary 2.6.3 (under the assumption that X∗ has
the Radon-Nikodým property) is given by Cho and Johnson [4] by an adaption
of the alternative proof due to Lindenstrauss and Tzafriri [26, pp. 39-40].

The similar argument as in Theorem 2.6.2 yields the next result.

Theorem 2.6.4. Let X be a Banach space. The following statements are
equivalent.

(a) X has the metric compact approximation property.
(b) For all Banach spaces Y , K(Y,X) is an ideal in L(Y,X) with an ideal

projection P such that

P (y ⊗ x∗) = y ⊗ x∗ for all x∗ ∈ X∗ and y ∈ Y.

(c) K(X,X) is an ideal in span (K(X,X) ∪ {I}) with ideal projection P
such that

P (x⊗ x∗) = x⊗ x∗ for all x∗ ∈ X∗ and x ∈ X.

43



The equivalence (a)⇔ (c) of Theorem 2.6.4 is contained in [10, Proposi-
tion 4].

An immediate corollary of Theorem 2.6.4 and Lemma 2.2.4 is the following
result due to Lima [23].

Corollary 2.6.5 (cf. [23, Theorem 14]). Let X be a Banach space with
the Radon-Nikodým property. X has the metric compact approximation prop-
erty if and only if K(X,X) is an ideal in span (K(X,X) ∪ {I}).

Theorems 2.6.2 and 2.6.4 remain valid for the metric approximation prop-
erty if one replaces K(Y,X) by F(Y,X) and K(X,X) by F(X,X) (this is clear
from the proofs). Therefore we have the following modifications of Corollar-
ies 2.6.3 and 2.6.5.

Corollary 2.6.6 (cf. [8, p. 246]). Let X be a Banach space such that X∗

or X∗∗ has the Radon-Nikodým property. If X∗ has the approximation prop-
erty, then X∗ has the metric approximation property.

Corollary 2.6.7 (cf. [23, Theorem 13]). Let X be a Banach space with
the Radon-Nikodým property. X has the metric approximation property if
and only if F(X,X) is an ideal in span (F(X,X) ∪ {I}).

There are several important results on the (metric) approximation prop-
erty for which it is not known whether or not they hold in the case of the
(metric) compact approximation property. For instance, it is known, as we
already mentioned above, that the (metric) approximation property for X∗

implies the same for X. Casazza and Jarchow [3] have shown that this is
not true for the metric compact approximation property, but it seems to be
an open question whether or not this is true for the compact approximation
property. It is not known whether Corollary 2.6.3 remains true if X∗ has
the compact approximation property (and not necessarily the compact ap-
proximation property with conjugate operators) (this question was posed by
Godefroy and Saphar in [15]). It is known that the metric approximation
property is separably determined: X has the metric approximation property
whenever every separable subspace is contained in a separable subspace of X
with the metric approximation property. In [28] (see also [29]), similar results
were shown for the metric approximation property having some special geo-
metric features (like unconditionality). We do not know whether these results
hold for the metric compact approximation property.
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de l’identité contractantes C. R. Acad. Sci. Paris, Sér. I, 328 (1999)
1167–1170.

[30] O.I. Reinov. How bad can a Banach space with the approximation prop-
erty be? Mat. Zametki 33 (1983) 833-846 (in Russian); English transla-
tion in Math. Notes 33 (1983) 427–434.

[31] A. Szankowski. Subspaces without approximation property. Israel J.
Math. 30 (1978) 123–129.

[32] G. Willis. The compact approximation property does not imply the
approximation property. Studia Math. 103 (1992) 99–108.

[33] P. Wojtaszczyk. Banach Spaces for Analysts. Cambridge Studies in
Advanced Mathematics 25, Cambridge University Press (1991).

47



48



Chapter 3

Boundedness and surjectivity

3.1 Introduction

The following question is fundamental in the theory of linear operators: Given
two topological vector spaces U and V . Suppose we are given a linear con-
tinuous operator T : U → V and suppose we can show that the range of T
contains a certain set A ⊂ V . Are there properties (S) such that the following
is true:

If A has property (S), then T must be onto

In one dimension the following is of course true: Suppose A ⊂ V contains
one point different from the origin. Then TU ⊃ A ⇒ TU = V . In arbitrary
n-dimensional spaces V the theorem goes like this: Suppose A ⊂ V contains
n independent vectors. Then TU ⊃ A⇒ TU = V .

Thus, the question is easy in finite dimensional spaces. When V does
not have finitely many dimensions, the question is not easy. The problem is,
naively spoken, that operators may very well have dense range without being
onto. But from classical theorems we know something: For example, when V
is a normed space and U is a Banach space, it was shown already by Banach
in the twenties that

If A ⊂ V is of second (Baire-)category in V , then TU ⊃ A⇒ TU = V .

However, there are examples of ”smaller” sets than second category sets
which allow one to draw the conclusion that the operator is onto. An example
of such a situation is provided by taking V = 9∞ and A as the set of 0-1
sequences (this follows as a special case of Seever’s theorem [3, p.17]).

Let us say that the set A ⊂ V has the surjectivity property if ”onto A
implies onto V ”. Since, by linearity, also the symmetric, convex hull of A
must be contained in the range of A, we may assume A to be symmetric and
convex. On the other hand, the theorems are most useful when A is ”small”,
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as in the 9∞ situation. Also, by passing to quotients, A has the surjectivity
property if ”onto A implies onto V for every injection”.

Again, speaking naively and intuitively: By continuity, T maps every
convergent net in U to a convergent net in V . So if TU is dense, but T is not
onto, that must be because there are limits in V that can’t be reached by the
convergent nets which T produces in V , from nets in U .

When U and V are Banach spaces, a necessary and sufficient condition
was given for a bounded set A to have the surjectivity property, by Kadets
and Fonf in 1982 [14, Proposition 1].

Theorem 3.1.1 (Kadets-Fonf). Let V be a Banach space and A ⊂ SV .
Then the following are equivalent statements:

(a) For any Banach space U and any bounded linear operator T : U → V
such that TU ⊃ A, one has TU = V .

(b) For every representation of A as the union of an increasing sequence
of sets, A = ∪∞

i=1Ai, (Ai ↑), there is an index j such that

inf
f∈SV ∗

sup
v∈Aj

|f(v)| > 0,

(i.e. Aj is a norming set for V ∗ (see Definition 3.2.1.))

We call the property in statement (b) in the Fonf-Kadets theorem ”thick-
ness”. Here we show that boundedness is not needed in their theorem and we
show that if (b) fails, then there is a Tauberian injection onto A, but not onto
Y (see Theorem 3.4.2). The latter fact is obtained by using the Davis, Figiel,
Johnson, and Pe'lczyński construction [1].

The main theorem, however, is that for Banach spaces, U and V , the
surjectivity property is equivalent to a boundedness property. More precisely:

Main Theorem: Let U and V be Banach spaces. Suppose A ⊂ V has
the surjectivity property and suppose we have a family of linear continuous
operators from V into U which is pointwise bounded on A. Then this family is
uniformly bounded (i.e. bounded in L(V,U)). Moreover, if A does not have the
surjectivity property, then there is a sequence of operators which is pointwise
bounded on A, but not bounded as a subset of L(V,U)).

Thus, boundedness conclusions and surjectivity conclusions can be drawn
from the common property, thickness.

Next we study the situation when U and V are duals of normed spaces,
equipped with weak star topologies. Again surjectivity and boundedness are
connected and this time to a weaker thickness property. Combined with a
theorem of H. Shapiro, this will have as an immediate corollary the following
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new theorem in complex function theory: Suppose T is a weak-star continu-
ous linear operator from a dual Banach space U into H∞(D) such that TU
contains the Blaschke products. Then T is onto H∞(D).

We will return to the surjectivity property towards the end of this section.
Let us now concentrate on boundedness. Recall the Banach-Steinhaus theo-
rem for Banach spaces: A family of linear continuous operators on a Banach
space X, which is pointwise bounded on a set of second category, is bounded.

Let V be a normed linear space. Motivated by the Banach-Steinhaus
theorem we say that A ⊂ V has the boundedness property if every family
of linear continuous operators on V , which is pointwise bounded on A, is
bounded. More generally, if U is a normed space and A is a subset of L(V,U),
we say that A has the A- restricted boundedness property if every family
of linear continuous operators in A, which is pointwise bounded on A, is
bounded. In the latter definition, ifA is the space of adjoint operators between
duals, we use the term w∗-boundedness property .

From the Banach-Steinhaus theorem we conclude that every second cat-
egory set A in a Banach space has the boundedness property. However, the
Nikodým-Grothendieck boundedness theorem (see e.g. [3, p. 14] or [2, p. 80])
says, in our terminology, that the set of characteristic functions in the unit
sphere of B(Σ) has the boundedness property. This set is certainly not of the
second category, it is even nowhere dense.

Let us have a look at a more recent theorem of J. Fernandez [5] (see also
[23]), which is in the same spirit as the Nikodým-Grothendieck theorem.

Theorem 3.1.2 (Fernandez’ theorem). Suppose (fn) is a sequence in L1(T )
such that

| sup
n

∫
T
fnφ dθ| <∞

for every inner function φ. Then

| sup
n

∫
T
fng dθ| <∞

for every g ∈ H∞(D) (and hence (fn) is bounded in the pre-dual of H∞(D)).

It is well known that the pre-dual of H∞ is L1/H
1
0 . Thus, by Theo-

rem 3.3.4, in our language, Fernandez’ theorem says that the set of inner
functions has the w∗-boundedness property in H∞(D). In [5] and [6] the
question whether the set of inner functions has the boundedness property was
posed. In [12] it was shown that also the set of Blaschke-products has the
w∗-boundedness property in H∞(D). It was there also shown that the linear
span of the Blaschke products is a first category set in H∞(D).

Let us now give a more precise definition of the surjectivity property in
normed spaces. We say that a set A ⊂ X has the surjectivity property if, for
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every Banach space Y , every T : Y → X onto A is onto X. If the conclusion
holds for a subsetA ⊂ L(X,Y ), we say that A has the A-restricted surjectivity
property . A special case of this is the case where A is the space of adjoint
operators between two duals. In this case we will say that A has the w∗-
surjectivity property .

We have already mentioned Seever’s theorem in a particular case. Let us
state it in full generality. B(Σ) denotes as usual the Banach space of bounded
measurable functions on a σ-algebra Σ.

Theorem 3.1.3 (Seever’s theorem). Let U be a Banach space and let A
be the subset of B(Σ) consisting of the characteristic functions on Σ. If T :
U → B(Σ) is such that TU ⊃ A, then T is onto.

The following list is meant to sum up what we have discussed above:

(a) Second category sets have the boundedness property and the surjec-
tivity property.

(b) The set of characteristic functions in B(Σ) has the boundedness prop-
erty and the surjectivity property, but is nowhere dense and its span
is first category.

(c) The set of Blaschke products in H∞(D) has the weak-star bounded-
ness property and its span is first category.

(d) In Banach spaces, bounded sets have the surjectivity property if and
only if they are not a countable increasing union of non-norming sets.

(e) In this paper it is shown that in Banach spaces the surjectivity prop-
erty and the boundedness property are equivalent. The same is true
in the weak-star case, and boundedness of A is not needed.

The Nikodým-Grothendieck theorem has interesting consequences and one
might expect nice consequences of analogous theorems in other Banach spaces
as well. In the following sections we will show different techniques to obtain
such theorems.

Some open questions are posed at the end of the paper. One question
which is not asked, but which seems relevant, is the following: In how general
situations can theorems analogue to what we have found here in the normed
case and in the weak-star case be proved? More specifically: What about op-
erator spaces with pointwise topologies, or with the topology so important for
the approximation property; the topology of uniform convergence on compact
sets?

3.2 Some more preliminaries

One objective in this paper is to prove that in Banach spaces the (w∗-) sur-
jectivity property and the (w∗-) boundedness property are equivalent to a
common property, called (w∗-) thickness. Here are some concepts we will
need:
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Definition 3.2.1. Let X be a normed space.

(i) A set A ⊂ X such that

inf
f∈SX∗

sup
x∈A

|f(x)| ≥ δ,

for some δ > 0, is called norming (for X∗).
(ii) A set A ⊂ X such that for all ε > 0, there exists 0 < t <∞ such that

tA+ εBX ⊃ BX is called almost absorbing.
(iii) A set A ⊂ X such that there exist 0 < λ < 1 and 0 < t < ∞ such

that tA+ λBX ⊃ BX is called λ-almost absorbing.

By the Hahn-Banach separation theorem the following lemma is easy to
prove (see Remark 3.2.1 for the complex case).

Lemma 3.2.2. The following statements are equivalent for a set A in a
normed space X.

(a) A is norming for X∗.
(b) co(±A) is norming for X∗.
(c) There exists a δ > 0 such that co(±A) ⊇ δBX .

More specifically, we can speak about δ-norming sets, where the δ refers
to the δ in (c).

Suppose a set B ⊂ X∗ is such that infx∈SX
supf∈B |f(x)| ≥ δ for some

δ > 0. In this case we will call the set norming for X or w∗-norming. Of
course we have a similar lemma for sets which are norming for X.

Lemma 3.2.3. The following statements are equivalent for a set B in the
dual X∗ of a normed space X.

(a) B is norming for X.
(b) co(±B) is norming for X.
(c) cow

∗
(±B) is norming for X.

(d) There exists a δ > 0 such that cow
∗
(±B) ⊇ δBX∗ .

Proposition 3.2.4. Let X be a normed space. Consider the following state-
ments:

(a) A is almost absorbing.
(b) A is λ-almost absorbing.
(c) A is norming.
(d) A is fundamental (i.e. span A = X.)

Then (a) ⇒ (b) ⇒ (c) ⇒ (d). For convex sets (a) ⇔ (b). (d) does not imply
(c) even if A is closed, convex and symmetric.
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Proof. (a) ⇒ (b) is trivial.
(b)⇒ (c): If A is λ-absorbing, there exists λ, t such that BX ⊂ tA+λBX .

Then, of course BX ⊂ t · co(±A) + λBX . Thus

BX ⊂ t · co(±A) + λBX ⊂ t · co(±A) + λ(t · co(±A) + λBX) ⊂ · · ·

⊂ t · co(±A) + λt · co(±A) + · · ·+ λnt · co(±A) + λn+1BX .

Since co(±A) is convex we obtain

BX ⊂ t · co(±A)(1 + λ+ · · ·λn) + λn+1BX .

But this is true for every n. Hence we can take limits:

BX ⊂ t · co(±A)
1

1 − λ
,

which gives

co(±A) ⊃ 1− λ

t
BX ,

and by Lemma 3.2.2, A is norming.
That (c) ⇒ (d) is trivial.
We now prove that (b) implies (a) for convex sets. Let ε > 0. Since A is

λ-almost absorbing and convex

BX ⊂ tA+ λBX ⊂ tA+ λ(tA+ λBX) = t(1 + λ)A+ λ2BX

⊂ · · · ⊂ (1 + λ+ λ2 + · · ·+ λn−1)tA+ λnBX ,

for every natural number n. Since λ < 1, λn is eventually less than ε.
To see that (d) does not imply (c), let

A = co(±en
n
) ⊂ l1.

It is easy to check that A has the desired properties.

Later we will need the now well-known construction of Davis, Figiel, John-
son and Pe'lzcynski. See [1] or [2, p. 227-228], or [15] for some recent results.
We call the space constructed by this procedure from a bounded, absolutely
convex set K, the DFJP-space constructed on K.

Proposition 3.2.5. Let X be a Banach space and let K ⊂ X be bounded,
convex and symmetric. Let XK be the DFJP-space constructed on K. Then
the natural embedding JK of XK into X is an isomorphism if and only if K
is norming for X∗.
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Proof. If K is norming for X, JK(K) ⊃ λ · BX for some λ > 0. Thus
JK(BXK

) ⊃ λ · BX and JK is invertible.
If XK and X are isomorphic by JK then, for some δ > 0,

δBX ⊂ C
def= JK(BXK

).

But, by the construction of XK (see [15]),

C ⊂ anK + a−nBX

for all n. We use that δBX ⊂ C inductively for a constant n:

anK + a−nBX ⊂ anK +
a−n

δ
(anK + a−nBX)

⊂ (an + 1
δ
)K +

a−2n

δ
BX ⊂ (an + 1

δ
)K +

a−2n

δ2
(anK + a−nBX)

⊂ (an + 1
δ
+

a−n

δ2
)K +

a−3n

δ2
BX

Continuing this way gives after r steps

anK + a−nBX ⊂ anK +

{
1
δ

r−1∑
k=0

1
(δ · an)k

}
K + (

1
δan

)r · a−nBX .

This is true for any n. Now choose N so big that δaN > 2. Then,

BX ⊂
2(1− (12)r)2N

δ
K +

1
2r

BX .

Now, by letting r →∞, we obtain
δ

2aN
BX ⊂ K.

This proves that K is norming.

Remark 3.2.1. When the space under consideration is complex, a norming set
A is a set such that for some δ > 0, co(∪|r|=1rA) ⊃ δBX . It is easy to verify
that all the results so far are true with complex scalars instead of real scalars.

Remark 3.2.2. Note that a set A has the surjectivity property (boundedness
property) if and only if co(∪|r|=1rA) has the surjectivity property (bounded-
ness property).

Fundamental sets are useful when testing for weak-star and weak conver-
gence of nets. The following Proposition is well-known and classic.
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Proposition 3.2.6. Let X be a normed space.
(a) Suppose a bounded net in X∗ converges pointwise on a fundamental

set A ⊂ X. Then it converges weak-star.
(b) Suppose a bounded net in X converges pointwise on a fundamental

set A ⊂ X∗. Then it converges weakly.

Remark 3.2.3. The Rainwater-Simons theorem [24, e.g.] ”is trivial” (and
works also for bounded nets) whenever the James boundary under consid-
eration is fundamental in X∗ (e.g. when X∗ has the RNP). If we have a
sequence, an interesting question is to give conditions on the fundamental set
such that boundedness automatically follows from the pointwise convergence
of the sequence.

Example 3.2.1. A famous theorem of Marshall says: H∞(T ) is the closed,
linear span of the Blaschke products. In other words, the Blaschke products
form a fundamental subset of H∞. Later it has been shown that the Blaschke
products form a subset of H∞ which is 1-norming for the dual (see [11, p.
195-197]). The most recent theorem in this direction is, as far as I know, the
result from [26] saying that the interpolating Blaschke products form a set
which is 10−7-norming for the dual.

We now define the terms ”thick” and ”thin”:

Definition 3.2.7. A set is called (w∗)- thin if it can be written as a countable
increasing union of (w∗)-non-norming sets. A set which is not (w∗-) thin is
called (w∗-) thick.

This classification of sets is not standard and the terms thick and thin sets
are often used to describe properties of sets. Maybe it would be better to call
thick sets Fonf sets since I think he is the one who first and best demonstrated
the relevance and importance of the thick sets. Fonf however never uses the
word thick, but in his works he always operates with ”thin” and ”not thin”
sets. See e.g. [14], [8] and [7] for examples of earlier use and applications of
these concepts.

Example 3.2.2. To get an idea of these properties, one can think of the ex-
treme points A of the unit ball in l1. This is a countable, hence thin (and thus
w∗-thin) set. Bl1 is the norm-closure of the convex hull of its extreme points
A = ext Bl1 = {±ei}∞i=1 so it is 1-norming. Let fn = nen. Then {fn} ⊂ c0
is pointwise bounded on A, but obviously not bounded as a subset of c0. So
this A does not have the w∗-boundedness property. Now define an operator
T ∈ L(l∞, l1) by T (x1, x2, ...) = (2−nxn)∞n=1. Then T is onto A, but since it is
injective, it can’t be onto l1. Thus A does not have the surjectivity property.
Since T is the adjoint of S : c0 → l1 defined by S(x1, x2, ...) = (2−nxn)∞n=1, A
does not have the w∗-surjectivity property either.

We want to show that the simple Example 3.2.2 is just a special case of a
very general principle in Banach spaces.
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3.3 The boundedness property in normed spaces

We recall the definition of the boundedness property.

Definition 3.3.1. A subset A of a normed linear space X is said to have
the boundedness property if for every normed space Y , every family (Tα) ⊂
L(X,Y ), which is pointwise bounded on A, is bounded.

A special variant of the following theorem was first published in [18]. Also
parts of it are implicit in [7].

Theorem 3.3.2. Suppose A is a subset of a normed space X. The following
statements are equivalent.

(a) A has the boundedness property.
(b) Every sequence (fn) ⊂ X∗ which is pointwise bounded on A is a

bounded sequence in X∗.
(c) A is thick.

Proof. (a) clearly implies (b). To prove that (b) implies (c) suppose A is thin.
Then we can pick a countable, increasing covering, ∪An, of A, consisting of
sets which are non-norming for X∗. Thus, we can find a sequence (fn) ⊂ X∗

such that fn ∈ nSX∗ but supAn
|fn(x)| < 1. Let x be an arbitrary element of

A. Then there is a natural number m such that x ∈ Am. Thus, since (An) is
increasing,

|fk(x)| ≤ ||fk|| ||x|| < m||x|| if k < m,

while

|fk(x)| < 1 if k ≥ m.

This proves that (b) implies (c).
To show that (c) implies (a), suppose A is thick and (Tα) is pointwise

bounded on A, i.e.

sup
α
‖Tαx‖ <∞ for every x ∈ A.

Put Am = {x ∈ A : supα ‖Tαx‖ ≤ m}. Then (Am) is an increasing family
of sets which covers A. Since A is thick, some Aq is norming. Then, using
Lemma 3.2.2, there exists a δ > 0 such that

co(±Aq) ⊇ δBX .

But then, for arbitrary α,

δ‖Tα‖ = sup
x∈δSX

‖Tαx‖ ≤ sup
x∈co(±Aq)

‖Tαx‖ ≤ q.

Thus supα ‖Tα‖ ≤ q/δ <∞, and the theorem is proved.
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Remark 3.3.1. Note how simple and general Theorem 3.3.2 is. It gives an
interesting perspective on the classical Banach-Steinhaus theorem for Banach
spaces, as soon as we have shown that sets of second category are thick. This
is done in the following easy Lemma.

Lemma 3.3.3. Let X be a normed space and suppose A is a second category
set in X. Then A is thick.

Proof. Suppose A is covered by an increasing family (Ai). Since A is of second
category, some Am contains a ball. Then co(±Am) contains a ball centered
at the origin, and hence Am is norming. Since (Ai) is arbitrary, A must be
thick.

We also have a ”uniform boundedness theorem” characterizing w∗-thickness.

Theorem 3.3.4. Let X be a normed space and suppose B is a subset of X∗.
Then the following statements are equivalent.

(a) B has the w∗-boundedness property.

(b) Every sequence (xn) ⊂ X which is pointwise bounded on B is a
bounded sequence in X.

(c) B is w∗-thick.

Proof. (a) of course implies (b). The proof that (b) implies (c) is completely
analogous to the corresponding part of the proof of Theorem 3.3.2. The proof
that (c) implies (a) is also similar to the corresponding part of the proof of
Theorem 3.3.2. Just put

Bm = {x∗ ∈ B : sup
α
‖T ∗
αx

∗‖ ≤ m},

and use the w∗-continuity of T ∗
α.

Remark 3.3.2. The set of extreme points of the unit ball of l1 shows that a
set can be norming for the dual without being w∗-thick. It is also possible
for a set to be w∗-thick without being norming for the dual (although it is of
course norming for the pre dual). In fact, the unit ball of any non-reflexive
space, considered as a subset of the bidual, give examples of such situations
(they are not even fundamental).

Corollary 3.3.5. The Blaschke products in H∞(D) is w∗-thick and 1-norming
for the dual.

Proof. By the main result in [12], the set of Blaschke products satisfies (b) of
Theorem 3.3.4. The set is 1-norming by [11, Corollary 2.6 p. 196].
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3.4 The surjectivity property in Banach spaces

In this section we study the surjectivity property in Banach spaces. Let us
start with the formal definition:

Definition 3.4.1. In a normed linear space X a set A is said to have the
surjectivity property if for every normed linear space Y , every T ∈ L(Y,X),
such that TY ⊃ A, is onto X. If A in a normed space has the surjectiv-
ity property for all T ’s coming from Banach spaces, we say that A has the
surjectivity property for Banach spaces.

Recall that an operator T : Y → X is called Tauberian if (T ∗∗)−1(X) ⊂ Y .
As an intuition, it is often helpful to think of these operators as opposite
to weakly compact operators. A nice reference for the theory of Tauberian
operators is [10].

The next theorem shows the connection between thickness and the surjec-
tivity property. The theorem is a generalization of Theorem 3.1.1, discovered
by Kadets and Fonf [14].

Theorem 3.4.2. Suppose A is a subset of a Banach space X. The following
statements are equivalent.

(a) A has the surjectivity property for Banach spaces.
(b) For every Banach space Y , every injection T : Y → X, which is onto

A, is an isomorphism.
(c) For every Banach space Y , every Tauberian injection T : Y → X,

which is onto A, is an isomorphism.
(d) A is thick

Proof. Of course (a) implies (b) and (b) implies (c).
To show that (c) implies (d) suppose (d) is not true, i.e. A is thin. We will

construct a Tauberian injection which is onto A but not onto all ofX. Let (Ai)
be an increasing family of non-norming subsets of A such that A = ∪∞

i=1Ai.
Since ∪∞

i=1Ai = ∪∞
i=1Ai∩ i ·BX and Ai∩ i ·BX is non-norming, we may assume

each Ai to be contained in i ·BX . Put C1 = A1 and Ci = Ai \Ai−1. Define

C = co(±
∞⋃
i=1

Ci
i2
).

Then C is closed, bounded, convex and symmetric. We now show that C
is non-norming for X∗. To do this, let ε > 0 and take j such that 1/j <
ε. Since Aj is not a norming set, there is a functional f ∈ SX∗ such that
supx∈Aj

|f(x)| < ε. By the definition of C,

sup
x∈C

|f(x)| = sup
i

{
1
i2
sup
x∈Ci

|f(x)|
}
.
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Take an arbitrary y ∈ C. Then either y ∈ Ai, i ≤ j or y ∈ Ai, i > j. In the
first case

|f(y)| ≤ sup
x∈Aj

|f(x)| < ε.

In the second case, since Ci ⊂ i · BX ,

|f(y)| ≤ sup
i>j

{
1
i2
sup
x∈Ci

|f(x)|
}
≤ sup
i>j

{
1
i2
· i
}
≤ 1

j
< ε.

Thus

sup
x∈C

|f(x)| < ε,

and C is not norming for X∗.
Hence, by Proposition 3.2.5, the Davis-Figiel-Johnson-Pelzcynski construc-

tion on C will produce a Banach space Y and an operator J : Y → X with
the desired properties, i.e. it is injective, Tauberian, onto A but not onto all
of X.

It remains to show that (d) implies (a). To do this, let T be any bounded,
linear operator, from a Banach space Y , into X and onto A. Put Ai =
T (i ·BY ) ∩A, where Y is the domain space of T . Since T is onto A, (Ai)∞i=1,
is an increasing covering of A. Since A is thick some Aj is norming for X∗.
By Lemma 3.2.2, there exists a δ > 0 such that

j · co(±TBY ) = j · TBY ⊃ δBX .

Hence TBY ⊃ (δ/j) ·BX and, by e.g. [19, Thm 4.13], T is onto.

We now combine Theorem 3.3.2 and Theorem 3.4.2 to obtain our main
result.

Corollary 3.4.3. In Banach spaces, the surjectivity property for Banach spaces
and the boundedness property are both equivalent to thickness.

Remark 3.4.1. By the Nikodým-Grothendieck boundedness theorem the char-
acteristic functions is a thick set inB(Σ). Thus Seever’s theorem (see Theorem
3.1.3) follows as a special variant of the very general Theorem 3.4.2.

Remark 3.4.2. The DFJP-embedding J is ”a little more” than Tauberian be-
cause J∗∗ is Tauberian. In [15] an easy argument is given to show that, in
fact, J is a norm-norm homeomorphism when restricted to the set on which
the DFJP-space is constructed.

It is interesting to compare Theorem 3.4.2 with the following observation
of R. Neidinger [17, p.119]. Its proof is given by a close inspection of a stan-
dard proof of the open mapping theorem, see e.g. [19, p.48]. An interesting
application can be found in [16].
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Lemma 3.4.4 (R. Neidinger). Let X and Y be Banach spaces and let T ∈
L(X,Y ). Then the following statements are equivalent.

(a) TBX almost λ-absorbs BY .
(b) TBX almost absorbs BY .
(c) TBX absorbs BY .
(d) T is onto.

An analogue to Lemma 3.4.4, using the terms thick set and norming set
is the following:

Lemma 3.4.5. Let X and Y be Banach spaces and let T ∈ L(X,Y ). Then
the following statements are equivalent.

(a) TBX is norming for Y ∗.
(b) TBX is thick in Y .
(c) T is onto.

Note that, by Proposition 3.2.4, (a) and (b) of Lemma 3.4.4 is equivalent
to (a) of Lemma 3.4.5.

Proof. Only the implication (a)⇒ (b) needs proof. TBX is norming, so there
is a δ1 > 0 such that TBX ⊃ δ1BY . Suppose TBX has been written as
an increasing countable union, TBX = ∪∞

i=1Ai. Then BX = ∪∞
i=1(T

−1(Ai) ∩
BX) = ∪∞

i=1Bi, an increasing union. Since BX is thick, there exists a number
m and a δ2 > 0 such that co(±Bm) ⊃ δ2BX . Thus

co(±Am) = co(±TBm) ⊃ Tco(±Bm) ⊃ δ2TBX ⊃ δ1δ2BY .

Let us now consider w∗-thick sets. Here is a characterization of such sets
in terms of surjectivity properties:

Theorem 3.4.6. Suppose B is a subset of a dual space X∗. Then the follow-
ing statements are equivalent.

(a) B has the surjectivity property for all dual operators into X∗, i.e. B
has the w∗- surjectivity property.

(b) B has the surjectivity property for all dual injections into X∗.
(c) B is w∗-thick.

Proof. That (a) implies (b) is trivial. To show that (b) implies (c) we make
necessary adjustments in the corresponding proof of Theorem 3.4.2. First
substitute A’s with B’s. Then define C by w∗-closure. Note that C is now a
non-w∗-norming set. Define Y to be the w∗-closure of span C.

If Y �= X∗ let T be the embedding of Y into X∗. Then, since Y is w∗-
closed, Y = (X/M)∗, where M is the annihilator of Y in X. Moreover, T is
the adjoint of the quotient map q : X → X/M .
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If Y = X∗ the set C can be used to define a new norm ‖ · ‖C on X by the
formula

‖x‖C = sup
c∈C

|c(x)|.

Then, by the definition of C, ‖ · ‖C is strictly weaker than the original norm.
Let E be the completion of X in this weaker norm, let j be the embedding
of X into E. The adjoint T of j is then continuous and injective (since j is
continuous and dense). Moreover, T is by definition onto C and hence onto
B. Thus (b) implies (c).

To show that (c) implies (a), mimicking the corresponding proof of Theo-
rem 3.4.2 gives the existence of a natural number j such that

(TBY )
w∗
⊃ δ

j
BX∗ .

Now we use that T is an adjoint operator. This gives us that the set TBY is
w∗-compact, and hence

TBY ⊃ δ

j
BX∗ ,

which concludes the proof.

The following corollary is known from [7].

Corollary 3.4.7. Suppose B is a bounded subset of a dual space X∗. Then
the following statements are equivalent.

(a) There exists a Banach space Y and an injection T : X → Y such that
T ∗ is injective and T ∗Y ∗ ⊃ B, but T is not invertible.

(b) B is w∗-thin.

Corollary 3.4.8. In the Banach space setting, the w∗- surjectivity property
and the w∗- boundedness property are both equivalent to w∗- thickness.

By the Fernandez-Hui-Shapiro theorems (see Theorem 3.1.2 and the com-
ments after it), the set of Blaschke-products is a w∗- thick, 1-norming subset
of H∞. Thus, if T is an adjoint operator from a dual Banach space into H∞

which is onto the set of Blaschke products, then T is onto X. We state this
in an alternative form:

Theorem 3.4.9. Let X be an arbitrary Banach space. Let B denote the
set of Blaschke-products in H∞. Suppose S ∈ L(L1/H

1
0 ,X) is such that

S∗(X∗) ⊃ B. Then X contains L1/H
1
0 as a closed subspace.

Proof. Since S∗ is dense, S is 1-1. Since B is weak-star thick S∗ is onto. Thus
S has closed range.
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3.5 The Seever property and the Nikodým prop-
erty

In [3, Example 5 p.18] an example is given to show that the Nikodým-
Grothendieck boundedness theorem may fail when the measures are not de-
fined on a σ- algebra, but just on an algebra.

In [21] five properties for algebras A of sets are discussed. They are as
follows:

(i) A has the Vitali-Hahn-Saks property (VHS) if the Vitali-Hahn-Saks
theorem holds on A.

(ii) A has the Nikodým property (N) if the Nikodým-Grothendieck bound-
edness theorem holds on A.

(iii) A has the Orlicz-Pettis property (OP) if, for every Banach space X,
weak countably additivite X-valued measures are countably additive.

(iv) A has the Grothendieck property (G) ifB(A) is a Grothendieck space,
i.e. if every weak-star convergent sequence in the dual is weakly
convergent.

(v) A has the Rosenthal property (R) if B(A) is a Rosenthal space, i.e. if
every continuous, non-weakly compact, linear operator into a Banach
space X fixes a copy of 9∞.

A σ-algebra has all these properties. It is shown in different papers (see
[21] and [4] for references) that (VHS) ⇔ (N) and (G), that (G) ⇒ (OP),
that (R) ⇒ (G) and that no other implications hold. For some time it was
open whether (G) alone might imply (N). A counterexample was given by M.
Talagrand in [25].

Let us say that an algebra has the Seever property (S) if Seever’s theorem
works on A.
Theorem 3.5.1. The following statements about an algebra A are equiva-
lent:

(a) A has the Nikodým property (N)
(b) A has the Seever property (S)
(c) The set {χA : A ∈ A} is thick

3.6 Some results on thickness in L(X, Y )∗

Let X and Y be Banach spaces. A very useful set in L(X,Y )∗ is the tensor
productX∗∗⊗Y ∗. Recall that the action of a functional x∗∗⊗y∗ on an operator
T ∈ L(X,Y ) is defined by (x∗∗ ⊗ y∗)(T ) = x∗∗(T ∗y∗). In [13, Lemma 1.7b p.
268] it is shown that extBX∗∗ ⊗ extBY ∗ is 1-norming for L(X,Y ). It need not
be w∗- thick. But often it is.

Lemma 3.6.1. Suppose A and B are w∗- thick subsets of X∗∗ and Y ∗ re-
spectively. Then A⊗B is a w∗- thick subset of L(X,Y )∗.
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Proof. We will use Theorem 3.3.4. Let (Tn) be a sequence in L(X,Y ) such
that

sup
n
|x∗∗ ⊗ y∗(Tn)| = sup

n
|x∗∗(T ∗

ny
∗)| <∞

for all x∗∗ ∈ A and all y∗ ∈ B. Since A is w∗- thick we conclude that

sup
n
‖(T ∗

ny
∗)‖ <∞

for all y∗ ∈ B. Since B is w∗- thick,

sup
n
‖T ∗
n‖ <∞

and the result follows.

Since, by definition, no countable set can be w∗-thick, the extreme points
of Bl1 is a w∗-thin set. This is in fact a special case of a rather difficult
theorem discovered by V.P. Fonf. Recall that a James boundary J for X is a
subset of X∗ such that every x ∈ X attains its norm on J . As an example,
the set of extreme points of the dual unit ball is always a James boundary for
X.

Theorem 3.6.2. If a Banach space X admits a w∗-thin James boundary J ,
then X contains a copy of c0.

We only present a list to show how the theorem can be proved with help
of different papers. The list points to the simplest proof known to the author.

Proof. (a) Note that the restriction of a James boundary to a subspace
Y is a James boundary for Y .

(b) Put J = ∪nAn. By Simons’ generalization of the Rainwater lemma
[24], there is a sequence (xn) on SX which converges weakly to 0.
By the Bessaga-Pe'lzcynski selection principle (see e.g. [2, p.42]) (xn)
can be assumed to be a basic sequence. Let Y = [xn]. We look for c0
inside Y .

(c) Let T be the natural embedding of Y into X. Put Bn = T ∗(An).
Then show that J ′ = ∪Bn is a James boundary for Y .

(d) Show that each Bn is relatively norm-compact as done on page 489
in [8]. Thus Y has a σ-compact James boundary J ′.

(e) Use Lemma 27 in [9] to renorm Y equivalently to have a countable
James boundary J ′′.

(f) Follow the proof of [9, Theorem 23] to construct a copy of c0 inside
a once more equivalently renormed version of Y . This copy is also a
copy in X.
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An interesting result follows from Lemma 3.6.1 and Theorem 3.6.2:

Corollary 3.6.3. Suppose X∗ and Y does not contain a copy of c0. Then
the set E = ext BX∗∗ ⊗ ext BY ∗ is w∗-thick in L(X,Y )∗.

Proof. Since neither X∗ nor Y contains a copy of c0, the sets ext BX∗∗ and
ext BY ∗ are both w∗-thick. Hence, by Lemma 3.6.1, E is w∗-thick.

Remark 3.6.1. Note that the set E is not necessarily a James boundary for
L(X,Y ). But being ”identical” to the set extBK(X,Y )∗ it is a James boundary
for K(X,Y ).

By combining the main result from [7] with the knowledge of the exposed
points of the dual unit ball of K(X,Y ) (see e.g. [20, Theorem 5.1]), we obtain
the following theorem on w∗-thickness of exp BK(X,Y )∗ .

Theorem 3.6.4. Suppose X∗ and Y are separable and Y does not contain a
copy of c0. Then exp BK(X,Y )∗ is w∗-thick.

Proof. Since X∗ is a separable dual it has the RNP and thus does not contain
a copy of c0. By the main result from [7], the sets A = exp BX∗∗ and B =
exp BY ∗ are both w∗-thick. Hence, by Lemma 3.6.1 A⊗ B is w∗-thick. But,
by [20], A⊗B is exactly the set of exposed points of BK(X,Y )∗ .

Remark 3.6.2. When X∗ and Y both are separable we obtain that K(X,Y )
is separable. However, K(X,Y ) may very well contain c0 even though X∗ and
Y doesn’t. For example, the space K(l2) contains a copy of c0.

Corollary 3.6.5. Suppose X and Y are separable, reflexive spaces. Then
w∗ − exp BK(X,Y )∗ is w∗-thick.

Proof. The result follows since w∗ − exp BK(X,Y )∗ = w∗ − exp BX ⊗ w∗ −
exp BY ∗ .

Corollary 3.6.6. Suppose X and Y are separable, reflexive spaces. Then
every James boundary of K(X,Y ) is w∗-thick.

Proof. Every James boundary must contain the w∗-exposed points of BX∗ .

3.7 Some questions and remarks

Suppose a Banach space contains a thin, fundamental set. Then, by the
definition of such a set, there exists a w∗- null sequence (x∗n) on SX∗ . Thus, the
Josefsson-Nissenzweig theorem is just a triviality in such spaces. Of course,
every separable Banach space contains a thin, even norming, set (take any
dense countable subset of BX). Also, it is immediate that any Banach space
containing a complemented separable subspace contains a thin, norming set.
Thus, WCG spaces contain thin, norming sets.
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Question 3.7.1. Does every Banach space contain a fundamental, thin set?
Does every Banach space contain a norming, thin set?

Fernandez, Hui and Shapiro have asked (in our notation) whether the
Blaschke-products is a thick subset in H∞ (not only w∗- thick). We formulate
an extended question:

Question 3.7.2. Is the set of inner functions (Blaschke-products) a thick
subset in H∞? Is the set of interpolating Blaschke-products thick or w∗- thick?

By a theorem of Mooney (see [11, p. 206-207]), the pre-dual of H∞ is
weak sequentially complete. Thus, it doesn’t contain a copy of c0. Hence, any
James boundary in H∞ is w∗-thick. In light of V.P Fonf’s theorem (Theorem
3.6.2) it is natural to ask:

Question 3.7.3. Is the set of inner functions (Blaschke-products, interpolat-
ing Blaschke-products) a James boundary in H∞?

If so, Fernandez’ and Shapiro’s results would follow as special cases of
Theorem 3.6.2.

We end this paper by giving a list of sets for which results on thickness
are known:

Theorem 3.7.4. The following results on thickness are valid:
(a) Any James-boundary of a Banach space not containing c0 is w∗-thick

(Fonf [8]).
(b) If X is a separable Banach space not containing c0, then exp BX∗ is

w∗-thick (Fonf [7]).
(c) The set of characteristic functions in B(A) when A has the Nikodým

(Seever) property, is thick (Nikodým-Grothendieck [3]). Thus, extBl∞
is thick.

(d) The set of inner functions and Blaschke products in H∞ are w∗-thick
and norming for the dual ([5], [12]).

(e) The tensor product of two w∗-thick sets in X∗∗ and Y ∗ is a w∗-thick
subset in L(X,Y )∗ (this paper).

(f) Suppose X and Y are separable, reflexive spaces. Then every James
boundary of K(X,Y ) is w∗-thick (this paper).
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Chapter 4

Slices in the unit ball of a
uniform algebra

4.1 Introduction

It is an important task in Banach space theory to determine the extreme point
structure of the unit ball for various examples of Banach spaces. The most
common way to describe “corners” of convex sets is by looking for extreme
points, exposed points, denting points and strongly exposed points.

Let C be a closed, bounded subset of a Banach space Y . A slice of C is a
set of the form

S(y∗, ε, C) = {y ∈ C: Re y∗(y) ≥ supRe y∗(C)− ε},

where y∗ ∈ Y ∗.
Let Bε(y) denote the ball with radius ε centred at y. A denting point of C

is a point y0 in C such that y0 /∈ co(C \Bε(y0)) for every ε > 0. Thus, by the
Hahn-Banach theorem, if y0 ∈ C is a denting point, then there are slices of C
of arbitrarily small diameter containing y0. When C has slices of arbitrarily
small diameter it is called dentable.

For the definitions of an extreme point, an exposed point and a strongly
exposed point, we refer to [2]. More or less directly from the definitions it
follows that every strongly exposed point is both denting and exposed, and
every denting or exposed point is extreme.

In this note A denotes an infinite-dimensional uniform algebra, i.e., an
infinite-dimensional closed subalgebra of some C(K)-space which separates
the points of K and contains the constant functions. In [1] Beneker and
Wiegerinck demonstrated the non-existence of strongly exposed points in BA,
the closed unit ball of A. Here we shall prove a stronger result by more
elementary means. A corollary of our result is that the set of denting points
is, in fact, also empty.
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The set of extreme points and the set of exposed points of the unit ball
have been characterised in many uniform algebras. For example, there are
lots of such points in the unit ball of H∞, the algebra of bounded analytic
functions on the unit disk, since every inner function is an exposed point (see
[3, p. 221]).

Let A be a function algebra on a compact space K. A point x ∈ K is
called a strong boundary point if for every neighbourhood V of x and every
δ > 0, there is some f ∈ A such that f(x) = ‖f‖ = 1 and |f | ≤ δ off V . The
closure of the set of strong boundary points is the Silov boundary of A. It is
a fundamental result in the theory of uniform algebras that one can identify
A as a uniform algebra on its Silov boundary; cf. [8, p. 49 and p. 78]. In
the sequel we shall therefore assume that the set of strong boundary points is
dense in K.

4.2 The slices have diameter 2

We now turn to our first result, which gives a quantitative statement of the
non-dentability of BA.

Theorem 4.2.1. Every slice of the unit ball of an infinite-dimensional uni-
form algebra A has diameter 2.

Proof. Take an arbitrary slice S = {a ∈ BA: Re 9(a) ≥ 1− ε}, where ‖9‖ = 1.
We will produce two functions in S having distance nearly 2. Let 0 < δ ≤ ε/11.
We first pick some f ∈ BA such that

Re 9(f) ≥ 1− δ.

The functional 9 can be represented by a regular Borel measure µ on K with
‖µ‖ = 1, i.e., 9(a) = ∫K a dµ for all a ∈ A.

Let ∅ �= V0 ⊂ K be an open set with |µ|(V0) ≤ δ; such a set exists since
K is infinite. Fix a strong boundary point x0 ∈ V0. Using the definition of
a strong boundary point, inductively construct functions g1, g2, . . . ∈ A and
nonvoid open subsets V0 ⊃ V1 ⊃ V2 ⊃ . . . such that

gn(x0) = ‖gn‖ = 1, |gn| ≤ δ on K \ Vn−1

and
Vn = {x ∈ Vn−1: |gn(x)− 1| < δ}.

Let N > 1/δ and define

g =
1
N

N∑
k=1

gk, h = f(1− g) ∈ A.
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By construction, |h| ≤ δ on VN and |h| ≤ 1 + δ on K \ V0. We claim that
‖h‖ ≤ 1 + 3δ. In fact, if x ∈ Vr−1 \ Vr, then |1 − gk(x)| ≤ δ if 1 ≤ k < r,
|gr(x)| ≤ 1 and |gk(x)| ≤ δ if r < k ≤ N , and therefore

|h(x)| ≤ 1
N

N∑
k=1

|1− gk(x)| ≤ (N − 1)(1 + δ) + 2
N

≤ 1 + 3δ.

We now estimate |9(f)− 9(h)|:

|9(f)− 9(h)| ≤
∫
K\V0

|f − h| d|µ| +
∫
V0

|f − h| d|µ|

≤
∫
K\V0

|g| d|µ| +
∫
V0

(|f |+ |h|) d|µ|

≤ δ + (2 + 3δ)|µ|(V0) ≤ 4δ.
Next, we produce a function ϕ ∈ A such that

ϕ(x0) = ‖ϕ‖ = 1, |ϕ| ≤ δ on K \ VN .

We then have ‖h± ϕ‖ ≤ 1 + 4δ, and the functions ψ± = (h± ϕ)/(1 + 4δ) are
in the unit ball of A. We have |9(ϕ)| ≤ 2δ and thus

|9(ψ±)− 9(h)| ≤ |9(h)| 4δ
1 + 4δ

+
2δ

1 + 4δ
≤ 6δ.

Consequently,

Re 9(ψ±) ≥ Re 9(f)− 10δ ≥ 1− 11δ ≥ 1− ε

so that ψ± ∈ S; but ‖ψ+ − ψ−‖ = 2/(1 + 4δ)→ 2 as δ → 0. Hence diamS =
2.

The point of working with g rather than g1 in the proof is to control
‖1−g‖. Another way to achieve this is to construct a suitable conformal map
φ from the unit disk to a neighbourhood of [0, 1] in C and to consider φ ◦ g1.

We now extend Theorem 4.2.1 to relatively weakly open subsets.

Theorem 4.2.2. Every nonvoid relatively weakly open subset W of the unit
ball of an infinite-dimensional uniform algebra A has diameter 2.

Proof. Every nonvoid relatively weakly open subset of the unit ball of a Ba-
nach space contains a convex combination of slices, see [4, Lemma II.1] or
[12]. Thus, if W ⊂ BA is given as above, there are slices S(1), . . . , S(n) and
0 ≤ λj ≤ 1,

∑n
j=1 λj = 1, such that

∑n
j=1 λjS

(j) ⊂W .
Let S(j) = {a ∈ BA: Re 9j(a) ≥ 1 − εj} with ‖9j‖ = 1 and representing

measures µj. We now perform the construction of the proof of Theorem 4.2.1
with ε = min εj , 0 < δ ≤ ε/11 as before and a nonvoid open set V0 ⊂ K such
that |µj |(V0) ≤ δ for all j. We obtain functions h(j) and ϕ (independently of j)
such that (h(j)±ϕ)/(1+4δ) ∈ S(j) and ‖ϕ‖ = 1. Therefore∑n

j=1 λjh
(j)±ϕ ∈

(1 + 4δ)W , and diamW = 2.
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4.3 Some remarks

In caseK does not have isolated points, Theorem 4.2.1 is a formal consequence
of the Daugavet property of A, proved in [14] or [13], and [7, Lemma 2.1].
Likewise Theorem 4.2.2 follows from [12] in this case. We are grateful to
K. Jarosz for pointing out to us that Theorem 4.2.2 can also be deduced from
results of his in [6].

It is clear from the description in terms of slices that a denting point
of the unit ball of a Banach space Y is a point of continuity for the identity
mapping from (BY ,weak) to (BY ,norm). Conversely, it is known that a point
of continuity which is an extreme point of BY is a denting point [9], [10].

The following corollary is immediate from Theorem 4.2.2.

Corollary 4.3.1. The unit ball of an infinite-dimensional uniform algebra
does not contain any denting points or merely points of continuity for the
identity mapping with respect to the weak and the norm topology.

A related result we would like to mention is the theorem due to Hu and
Smith stating that the unit ball in the space of continuous functions from a
compact Hausdorff space into a Banach space equipped with its weak topology
has no denting points [5]. This result was also obtained by T.S.S.R.K. Rao
[11], who has informed us that he has also given a proof of Corollary 4.3.1
based on techniques from that paper.
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