
Parallel Hypothesis Driven Video Content Analysis

Ole-Christoffer Granmo
Agder University College

Grooseveien 36, N-4876 Grimstad, Norway

ole.granmo@hia.no

ABSTRACT
Extraction of features from images, followed by pattern clas-
sification, is a promising approach to automatic video anal-
ysis. However, a parallel processing environment is typi-
cally required for real-time performance. Still, single-CPU
Bayesian network systems for hypothesis driven feature ex-
traction have been able to classify image content real-time
— the expected information value and processing cost of fea-
tures are measured, and only efficient features are extracted.
The goal in this paper is to combine the processing bene-
fits of parallel and hypothesis driven approaches. We use
dynamic Bayesian networks to specify video analysis tasks
and the particle filter (PF) for approximate inference, i.e.,
feature selection and classification. The inference accuracy
of any given PF is determined by the number of particles it
maintains. To increase the number of particles maintained
without reducing the processing rate, we apply multiple PFs
distributed in a LAN, and a pooling system to coordinate
their output. Our resulting multi-PF architecture supports
three video frame processing phases: a parallelized feature
selection phase, followed by a parallelized feature extraction-
and classification phase. Unfortunately, we observe a loss of
inference accuracy when splitting a single PF into multiple
independent PFs. To reduce this loss, we let the pooled PFs
exchange particles across the LAN. An object tracking sim-
ulation demonstrates the ability of our architecture to select
efficient features as well as the effectiveness of our particle
exchange scheme — we observe a significant increase in in-
ference accuracy compared to the tested non-parallel PF.

Keywords
Real-time Video Content Analysis, Feature Selection, Par-
ticle Filtering, Bayesian Networks, Parallel Processing

1. INTRODUCTION
The technical ability to generate volumes of digital video

data is becoming increasingly “main stream”. To utilize the
growing number of video sources, both the ease of use and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC ’04, March 14-17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

the computational flexibility of methods for content based
access must be addressed.

In order to make video data more accessible, pattern clas-
sification systems which automatically classify video data in
terms of high-level concepts have been taken into use. The
goal of such systems is to bridge the gap between the low-
level features produced through signal processing (e.g., color
histograms and motion vectors) and the high-level concepts
desired by the end-user (e.g., “running person”).

In the above context, dynamic Bayesian networks (DBNs)
[14] represent a particularly flexible class of pattern classi-
fiers that allows statistical inference and learning to be com-
bined with domain knowledge. Indeed, DBNs have been
applied to a wide range of video content analysis problems,
e.g., [1,7,9,12,20]. The successful application of DBNs can in
many ways be explained by their firm foundation in prob-
ability theory, combined with the effective techniques for
inference and learning that have been developed.

The particle filter (PF) [13, 16, 17] is an approximate in-
ference technique that opens up for real-time DBN-based
event detection/tracking in video. That is, the PF supports
content-based analysis of video frames as they are captured.
A real-time building surveillance system could for instance
automatically classify whether someone is running rather
than walking, on-line. To elaborate, in [16] the PF is used
for probability density propagation that allows simultaneous
tracking and verification in video.

A video content analysis application is typically required
to process video frames at a certain rate, or to respond to
real world events within a certain time limit. In such cases,
attention must be paid to the processing environment used
as well as to the selection and configuration of feature ex-
traction and classification tasks.

There are two main approaches to meeting processing
rate/response time requirements. The first approach is to
parallelize the feature extraction and classification to take
advantage of multiple CPUs. The processing rate/response
time of an application can then be improved by making more
CPUs available for processing. For instance, in [8] an exten-
sible and modular software architecture for parallel process-
ing of data streams is proposed. Furthermore, in [18] it is
shown how event response time can be improved by dis-
tributing the logical processing tasks of a video surveillance
application in a physical processing architecture consisting
of multiple connected CPUs. Similarly, [4, 10] describe a
framework for coarse-grained multi-level parallelization and
distribution of video stream filtering/transformation, fea-
ture extraction, and classification.

The second approach to meeting processing rate/response
time requirements is based on the assumption that feature
extraction typically is significantly more processing intensive
than classification. Feature extraction may involve costly
on-line signal processing while a pattern classifier is nor-
mally trained/specified off-line, such that it performs effi-
ciently on-line. Thus, the second approach, referred to as
hypothesis driven feature extraction, is based on only ex-
tracting selected features. The goal is to minimize feature
extraction processing cost, while still maintaining accept-
able classification accuracy. E.g., in the Bayesian network
based image classification system from [15], features are ex-
tracted sequentially in decreasing order of efficiency (value
of information relative to cost of processing). When the effi-
ciency falls below a threshold, the feature extraction stops.
Likewise, [2] is a recent approach from the field of physical
sensor management which supports selection of the most
“informative” sensor at each time step of a tracking task.

By integrating the parallel and the hypothesis driven video
content analysis approaches, it should be possible to achieve
further processing rate/response time improvements. How-
ever, several difficulties are introduced. Selected features
should be extracted in parallel to support computationally
costly signal processing. Also, the actual feature selection,
as well as the classification, should be parallelized to support
complex, accurate, and/or timely video content analysis.

In this paper we propose a logical video content analysis
architecture that targets the above described difficulties. As
a basis, we overview DBNs and PFs in Section 2. In Sec-
tion 3, we show how the so-called pooled classifiers architec-
ture [3] can be applied to execute multiple PFs in parallel in
a Local Area Network (LAN). We also propose a three-phase
procedure for processing video frames, consisting of parallel
feature selection, feature extraction, and classification. To
reduce the loss of inference accuracy caused by splitting a
single PF into multiple independent PFs, we then suggest
a communication scheme that allows PFs to exchange par-
ticles across a LAN. The resulting techniques are evaluated
empirically in Section 4. We conclude in Section 5.

2. DYNAMIC BAYESIAN NETWORKS AND
PARTICLE FILTERING

We use DBNs to specify video content analysis tasks, and
we shall here give a short introduction. For a more thor-
ough treatment, readers are referred to e.g. [14,21]. We also
review the principles behind PF based inference.

2.1 Dynamic Bayesian Networks (DBNs)
A DBN consists of a qualitative and a quantitative part.

The qualitative part is a directed acyclic graph (DAG). The
nodes in the DAG are variables with states. Each variable
represent an entity of interest, and the states of a variable
represent the states the corresponding entity can be in. For
instance, consider a video frame divided by an 8 × 8 grid.
A motion feature is extracted from each grid position, and
the goal is to determine the coordinates of a tracked object
from these motion features. Then, one DBN variable could
represent the position of the object. This variable would
have 64 states, one for each grid position. Furthermore, we
could assign a motion feature variable to each grid position
with states “low”, “medium”, and “high”. These variables
would represent the output of the motion feature extractors.

11M M81

M18 88M

H − H

Figure 1: A DBN modeling object tracking.

The directed links in the DAG represent causal impact
between the variables. E.g., a moving object influences the
features output by the motion feature extractors, and there-
fore we should add a link from the object position variable
to each motion feature variable. So far, the above descrip-
tion corresponds to an ordinary Bayesian network (BN). The
difference between a BN and a DBN is that, in a DBN, the
DAG is sectioned into a sequence of identical time slices.
Each time slice represents a particular interval in time. This
means that links between variables in two consecutive time
slices indicate a causal impact from time interval to time
interval. In a DBN, we could for instance let each time slice
correspond to a video frame and then relate the possible
positions of a moving object from time slice to time slice.

The qualitative DBN part suggested above represents an
object tracking task and is illustrated in Figure 1. This DBN
consists of 8 × 8 motion feature variables Mij , organized
spatially as a grid, and a hypothesis variable H representing
the grid position of a tracked object. The inter time slice
link (H−, H) reflects that the position of the object depends
on its position in the previous time slice. Similarly, the link
from H to a motion feature Mij reflects the causal impact of
each object position on the motion feature at grid position
i, j. Note that in a stationary model, the causal impact
between time slices does not vary. Thus, only the causal
impact between two arbitrary consecutive time slices needs
to be specified, as illustrated in the figure.

We now turn to the quantitative part of a DBN — the
strength of the directed links are represented as conditional
probabilities. For each variable A with parents pa(A), we
have to specify the conditional probabilities P (A | pa(A)).
If pa(A)= ∅ we specify the prior probabilities P (A). So, for
the DAG in Figure 1 we have to specify P (H−), P (H | H−),
P (M11 | H) · · · P (M88 | H). E.g., we could set P (M11 =
high | H = [6, 6]) = 0.05 in order to indicate that significant
motion in block [1, 1] is unlikely when the object is located
at grid position [6, 6].

The above DBN model is used as a basis for the object
tracking application described in [4, 5]. Other kinds of con-
tent analysis tasks can be modeled in a similar manner. To
conclude, we mainly use DBNs to calculate posterior proba-
bilities, i.e., to calculate the probability of certain variables
being in certain states, given the observed states of other
variables. E.g., assume that we consider a single video frame
and that the states of the motion feature variables have been
observed for that frame: M11 = m11, . . . , M88 = m88. We
could then calculate P (H = [i, j] | M11 = m11, . . . , M88 =
m88) for each coordinate [i, j] and identify the a posteriori
most probable object position. Note that we are free to se-
lect which features to observe, and the selection determines
how accurately the position of the object can be decided.

1: % Extend particles to cover time slice t + 1 from t

2: S′ := copy(S);
3: FOR EACH s ∈ S DO
4: % Replace particle s based on sampling from
5: % distribution defined by particle weights
6: s := SAMPLE P (S′);
7: % Assign state to DBN variables in new time slice

8: FOR EACH Xt+1 ∈ X t+1 DO

9: IF Xt+1 ∈ Ht+1 THEN

10: s.Xt+1 := SAMPLE P (Xt+1 | pa(Xt+1) = s.pa(Xt+1));
11: ELSE

12: s.Xt+1 := OBSERVE Xt+1;

13: s.w × = P (Xt+1 = s.Xt+1 | pa(Xt+1) = s.pa(Xt+1));

Figure 2: The updating step of the PF algorithm.

2.2 A DBN Based Particle Filter (PF)
There exist many algorithms for calculation of posterior

probabilities in DBNs [14,21]. The PF [13,17] is a real-time
approximate technique. We here describe the PF in two
stages. I.e., we first describe the state of a PF at time slice
t (including t = 0). From this state, posterior probabilities
can be calculated given features observed up to and includ-
ing time slice t. We then describe a procedure for advancing
to time slice t + 1.

Let X t denote the set of DBN variables in time slice t.
Furthermore, let Ht denote the so-called hypothesis vari-
ables of time slice t, that is, the variables Ht ⊆ X t which
cannot be observed directly. Finally, let F t denote the so-
called feature variables in time slice t, i.e., the variables
Ft ⊆ X t whose states can be observed.

For the current time slice (t) our PF maintains a set S of
particles. The particles can be seen as weighted samples. A
single particle s consists of two parts. The first part of s is
simply an assignment of a state xt to each hypothesis vari-
able Xt ∈ Ht: s.Xt := xt. Similarly, each feature variable
Xt ∈ Ft is assigned its observed state. In our example, a
particle assigns an object position to the current video frame
as well as a degree of motion to each grid position.

The second part of s is a weight s.w which determines the
probability of the feature observations up to and including
time slice t, given the states s assigns to the hypothesis
variables: P (F1 = f1, . . . ,Ft = f t | H1 = s.H1, . . . ,Ht =
s.Ht). Accordingly, this part indicates how accurately the
assignments of s reflect the “truth”. Note that each particle
is initialized by sampling from a prior distribution P (X 0)
specified as a part of DBNs, e.g., P (H−) in our example
DBN. The particle weights are set to 1 — no observations
done for t = 0.

By normalizing the weights of the particles, the particles
can be seen as an approximation of the joint posterior proba-
bility distribution P (Ht | F1 = f1, . . . ,Ft = f t) [21]. From
this joint probability distribution, the posterior distribution
of individual hypothesis variables can be calculated.

The question then is how to update the particle set S so
that it covers a new time slice t + 1. An algorithm which
performs this updating step is found in Figure 2 and detailed
below. Each particle s is updated as follows. First, s is re-
placed by a particle drawn randomly from the particle set.
The particle is drawn according to the probability distribu-

tion derived by normalizing the particle weights, hereafter
denoted P (S′). Generally, the resulting replaced particle
set will provide a better starting point for approximating
P (Ht+1 | F1 = f1, . . . ,Ft+1 = f t+1) compared to the orig-
inal particle set. This is because particles representing less
likely scenarios are equivalently less likely to be included in
the new particle set. Thus, the particles are concentrated
on the likely scenarios and will not spread out across an
exponentially large set of possible, but unlikely scenarios.

As a second step, the DBN variables in time slice t + 1
are ordered topologically with respect to the DBN DAG and
assigned states by particle s in that order. Each hypothesis
variables Xt+1 ∈ Ht+1 is assigned a state drawn from the
conditional probability distribution P (Xt+1 | pa(Xt+1) =
s.pa(Xt+1)). Because of the ordering of the variables, the
particle has already assigned states to the parents pa(X t+1)
of Xt+1. The feature variables are treated differently as the
states of these are given. In short, the particle weight s.w

is updated to include each new observation (s.Xt+1 := OB-
SERVE Xt+1): s.w := s.w×P (Xt+1 = s.Xt+1 | pa(Xt+1) =
s.pa(Xt+1)).

In essence, the above mechanisms evolve the particles to
be a summarization of likely video frame interpretations.

3. A PARALLEL HYPOTHESIS DRIVEN
VIDEO ANALYSIS ARCHITECTURE

The limited processing resources available on a typical
host restrict the complexity, accuracy, and timeliness of video
content analysis tasks. In this section, we apply the pooled
classifiers architecture [3] to PFs in order to support paral-
lel hypothesis driven video content analysis — multiple PFs
execute in parallel and a pooling system coordinates their
output. We also propose a PF communication scheme for
exchanging particles, with the goal of increasing inference
accuracy.

3.1 Pooled Classifiers Architecture and PFs
In a traditional pooled classifiers architecture [3], k in-

dependent classifiers take a set of features as input. The
classifiers are executed in parallel so that k classifications
are output. A pooling system aggregates these outputs to
make a final classification.

We adopt the principles of the pooled classifiers architec-
ture to PFs. In short, PFs are used as classifiers and a pool-
ing system coordinates their output. The processing of each
video frame t is done in three phases — a feature selection
phase, a feature extraction phase, followed by a classification
phase. We parallelize the three phases as shown in Figure
3. The figure illustrates that the available CPUs switch be-
tween extracting features and filtering particles. In between,
a pooling system executes on a selected CPU. The CPUs are
connected in a LAN, and communication is based on trans-
mitting messages across the LAN. Modern LANs typically
allow messages to be transferred between machines in a few
microseconds or so [22] — a small amount of time in the
context of video content analysis (normally at least 40 mil-
liseconds are available for processing each video frame).

Let us now take a closer look at the above indicated pro-
cessing phases and the resulting communication. Phase one
is illustrated in Figure 4. The goal in phase one is to iden-
tify the n features, Φt ⊆ Ft, which are most efficient when it
comes to determining the content/events of time slice t. To

FE

PFPF PF

Prob. Dist.Particle

CPU 1 CPU 2

...

CPU k

FEk

k2

2

1

FE1

PS

Video Stream

Figure 3: CPUs in a LAN — each CPU switches be-
tween feature extraction (FE) and particle filtering
(PF). A Pooling System (PS) executes on a selected
CPU. The dotted ovals represent LAN messages.

Pooling System

1
tP (H, F , e)t t−1

1
tP (H, F , e)t t−1

...

1

n k
tP (H, F , e)t t−1

k
tP (H, F , e)t t−1

...Classifier 2Classifier 1
ComponentComponent Component

Classifier k

tΦ

...
1

n

Figure 4: Feature selection phase.

elaborate, each PF i updates its particles to cover time slice
t in the traditional manner (see Figure 2), however, features
have not yet been extracted in time slice t so particle weights
are not updated. For each feature variable F t

j ∈ Ft, the
particles are then used to approximate the joint hypothesis-
feature probability distribution P (Ht, F t

j , et−1). Here, et−1

denotes features extracted from previous video frames. In
essence, P (Ht, F t

j , et−1) describes the pairwise interplay of
feature variable F t

j and the hypothesis variables Ht, in light

of previous observations et−1. As a last step, each PF sub-
mits the resulting set of joint hypothesis-feature probability
distributions to the pooling system, as illustrated in Figure
3 and Figure 4.

For each feature F t
j ∈ Ft, the pooling system then sums

and normalizes the k local approximations of P (Ht, F t
j , et−1)

it has received from the PFs. By mimicking a non-parallel
PF in this manner, a set of joint global posterior hypothesis-
feature distributions are produced: P̂ (Ht, F t

j |e
t−1), F t

j ∈
Ft. These global probability distributions summarize the “a
posteriori” interaction between each feature variable F t

j and
the hypothesis variables Ht and accordingly, form the basis
for the simple entropy calculations required to determine the
efficiency Ef (F t

j) of each feature variable F t
j :

Ef (F t
j) =

H(Ht) − H(Ht | F t
j)

Cost(F t
j)

.

I.e., the entropy of the hypothesis distribution, P (Ht), is
used to measure the current hypothesis uncertainty:

H(Ht) = −
�

ht∈Ht

P (ht)log[P (ht)],

and the expected entropy of the hypothesis distribution is
used to measure the hypothesis uncertainty to be expected
after extracting a feature F :

Pooling System

t
1P (H, e, t−1Φ=φ)t t t

kP (H, e, t−1Φ=φ)t t

...Classifier 2Classifier 1
ComponentComponent Component

Classifier k

h

t t tφ

t
max

φ φ

Figure 5: Classification phase.

H(Ht|F) = −
�

f∈F

P (f)
�

ht∈Ht

P (ht|f)log[P (ht|f)].

In other words, the so-called Mutual Information Gain di-
vided by the feature extraction processing cost is used to
measure the efficiency of each feature in time slice t. Finally,
the pooling system outputs the n most efficient features Φt.

In phase two, the selected features are extracted in parallel
on the available CPUs, as determined by the pooling system.
Note that we assume that the video frames are transmitted
to the CPUs by means of so-called multicast as indicated in
Figure 3 and discussed further in [5, 6].

Finally, phase three is illustrated in Figure 5. In phase
three, each PF i takes the features extracted in the cur-
rent time slice t as input, i.e., Φt = φt is taken as input.
Based on this input, each PF updates its particle weights
and outputs an approximation of the unnormalized hypoth-
esis probability distribution P (Ht, et), as follows from Sec-
tion 2. Note that, et ≡ et−1 ∪ {Φt = φt}. The pooling
system sums and normalizes the output local approxima-
tions, to produce a global posterior hypothesis probability
distribution P̂ (Ht|et). This global probability distribution is
used to identify the posterior most probable hypothesis state
Ht = ht

max, which the pooling system outputs. Accordingly,
the content of time slice t is classified. This concludes the
processing of time slice t.

3.2 A Scheme for Exchanging Particles
Unfortunately, the above approach to parallelizing PFs

has a significant disadvantage. The approach fragments the
particles of the PF to be parallelized into k sets, one for each
classifier component. This influences the particle replace-
ment conducted at line 6 of the PF algorithm in Figure 2.
To explain the consequences of this fact, let us first consider
some of the characteristics of the traditional PF.

The traditional PF is mainly model-driven and not data-
driven. That is, only the prior hypothesis state distribution
of a new time slice t, as modeled by the DBN, is used for
sampling (see line 10 from Figure 2). The features extracted
in the time slice (the data) are not considered at all when
sampling the hypothesis states. So, if the true states of the
hypothesis variables are improbable given the prior distribu-
tion, few particles will match those states (how few depends
on how improbable the true states are). For instance, as-
sume that a DBN models the movement patterns of a certain
class of airplanes. If the pilot of an airplane that is tracked
by a PF manages to make a difficult and therefore improba-
ble maneuver, few particles will match that move. This may
cause problems for the PF. Indeed, if no particles match the
true hypothesis states, the PF may lose track of the current

real-world situation. On the other hand, if even a single par-
ticle is able to match the true hypothesis states, the particle
replacement step of line 6 in Figure 2 makes sure that most
of the particles are brought back on track.

However, this particle replacement effect is significantly
reduced when the particles are fragmented into small sets as
in the above pooled classifiers architecture: particles are only
replaced from the locally available particles. Consequently,
each individual PF in the pool may lose track of the real-
world situation one-by-one. As PFs start loosing track of
the real-world situation, increasingly amounts of noise are
introduced to the pooling system. Consequently, the classi-
fication suffers.

To overcome the above fragmentation problem, we now
introduce a scheme for exchanging particles between the
pooled PFs. The main purpose of exchanging particles is
to bring strayed PFs back on track.

The scheme takes advantage of LAN support for broad-
casting messages. Note that other classes of efficient one-to-
many communication mechanisms may also be used, such as
multicast. Broadcasting a particle means that the particle
is received by all the pooled PFs by the means of a single
LAN transmission. In contrast, traditional unicast commu-
nication requires one LAN transmission for each recipient.
Accordingly, if each of the k PFs in the pool are to submit
a particle to each of the other PFs in the pool, we would
need k(k − 1) LAN transmissions when applying unicast.
By using broadcast, on the other hand, we only need k LAN
transmissions for this particular particle exchange. Accord-
ingly, by taking advantage of the broadcast facilities of a
LAN, efficient sharing of particles may be achieved.

To elaborate, we add a particle broadcast step to the PF
algorithm from Figure 2:

14: BROADCAST argmaxs∈S s.w;

In this step, each PF identifies the particle with the largest
weight and then broadcasts this particle to the other PFs in
the pool. This means that when each PF advances to a new
time slice, they have been supplied with k − 1 additional
particles. As a consequence, line 2 of the PF algorithm is
modified so that local particles also can be replaced by the
supplied particles (SB):

2: S′ := copy(S ∪ SB);

Note that the particle weights have to be normalized repeat-
edly in order to avoid the difficulty of representing small real-
valued numbers on computers. In our distributed scheme,
normalization is supported by piggy-backing normalization
constants with the broadcasted messages.

To conclude, the scheme makes sure that each PF is pro-
vided with the locally most likely particles in the PF pool, by
only transmitting a number of messages equal to the number
of PFs across the LAN at each time step. Most importantly,
this scheme guarantees that the globally most likely particle
in the PF pool always is shared between the PFs.

4. EMPIRICAL RESULTS
In this section we evaluate the proposed techniques empir-

ically by the means of the DBN object tracking model from
Figure 1. In order to challenge the model-driven PF ap-
proach, we simulate an object that makes unexpected moves
from time slice to time slice, i.e., the movement does not

0.04 0.040.12

0.360.12 0.12

0.040.120.04

Figure 6: The modeled probability of each possible
object move centered on the current object position.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

Tr
ac

ki
ng

 P
ro

ba
bi

lit
y

Time Slices

7 Sensors
8 Sensors

16 Sensors
64 Sensors

Figure 7: The tracking probability of 8 parallel PFs
exchanging particles, after # time slices.

conform to the tracking model. The tracked object could
for instance be an airplane whose pilot tries to confuse the
tracker by making unexpected maneuvers. To elaborate, we
let the object movement between two time slices have prob-
ability 0.04 of occurring a priori, as illustrated in Figure 6.
With 128 particles (on track) the probability that no parti-
cle matches a given movement is then 0.96128 ≈ 0.005, and
with 16 particles the probability is 0.9616 ≈ 0.52. Although
an object can be in any of the 64 grid positions, we see from
Figure 6 that it only moves to one of the 8 adjacent grid
positions in the transition between two time slices. We also
see that the object makes the a priori least probable move of
the possible moves. Note that the object is only detectable
by the motion sensor at its current location.

The pooled PFs architecture is tested with 8 PFs, each
maintaining 16 particles. The architecture is evaluated both
with and without the particle exchange scheme. Also, a
non-parallel single PF that maintains 128 particles is tested
for comparison purposes. The number of time slices passed
before a technique loses track of the object is counted, and
the probability of keeping track of the object at each time
slice is calculated based on 1000 simulation runs.

In each time slice, there are 64 motion features available
for extraction, one for each grid position. In order to evalu-
ate the ability of our architecture to select efficient features,
we restrict the number of features that can be extracted
in each time slice. The results of extracting 7, 8, 16, and
64 motion features per time slice, using our pooled PFs ar-
chitecture enhanced with the particle exchange scheme, are
shown in Figure 7.

When 16 motion features are extracted per time slice 25
percent of the features are extracted, with a corresponding
reduction in processing resource usage. Still, no significant

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

Tr
ac

ki
ng

 P
ro

ba
bi

lit
y

Time Slices

No Exchange of Particles
Exchange of Particles

Single Particle Filter

Figure 8: The tracking probability after # time
slices when 8 features are extracted per time slice.

loss in classification accuracy is observed. This is probably
because only motion features which are likely to be in close
vicinity of the tracked object are extracted, and 16 motion
features are more than sufficient when the object only is
allowed to move to adjacent grid positions from time slice
to time slice.

When 8 motion features can be extracted per time slice
(12.5 percent of the features), the quality of the feature se-
lection technique becomes critical. Generally, there is only
one possible configuration of 8 features which allows accu-
rate tracking, namely, the 8 motion features which surround
the true (actual) position of the moving object. Still, as
seen in the figure, the tracking is quite accurate compared
to extracting all 64 features in each time slice.

When only extracting 7 motion features per time slice,
the PFs quickly loose track of the object. This is most
likely because the object then no longer can be completely
enclosed by extracted motion features.

In Figure 8 we compare the results of the pooled PFs ar-
chitecture with and without the particle exchange scheme.
We also test a non-parallel single PF that maintains 128
particles for comparison purposes. The results shown in the
figure confirm our reasoning from the previous section re-
garding fragmentation of particles. When a PF in the pool
is isolated from the other PFs, the probability that it looses
track of the situation is 0.52, at any given time step. How-
ever, when our particle exchange scheme is introduced, the
globally most probable particle is shared between all the
PFs, and as seen, far better accuracy is achieved. Indeed,
the pooled PFs architecture, when applying the particle ex-
change scheme, tracks the object more accurately than the
single non-parallel PF. This is despite the fact that the num-
ber of particles totals to 128 in both cases. An explanation of
this surprising result seems to be found in the field of genetic
algorithms, where the population of individuals sometimes
are subdivided into so-called demes. A restricted migration
process between demes allows more diverse populations to
evolve. This is because the currently most fit individuals
are not allowed to dominate the complete population imme-
diately [19]. A full study of this effect for our pooled PFs
architecture is further work.

We have also tested the scalability of our parallel hypoth-
esis driven video content analysis architecture. Firstly, we

Table 1: The achieved frame rate for different num-
bers of PFs (CPUs) — 20 × 16 motion features are
extracted per time slice and 1100 particles are shared
between the PFs for video frame classification.

1 PF 2 PFs 4 PFs 5 PFs
Frame rate 5 10 20 25

have implemented an object tracking application in the C
programming language, based on the parallel feature extrac-
tion and classification phases described in Section 3 [4]. The
processing rates achieved when executing respectively 1, 2,
4, and 5 pooled PFs in a switched LAN were measured,
and we observed that the processing rate increased linearly
with the number of CPUs (see Table 1). Secondly, in a
Python implementation of the feature selection and classi-
fication phases, the pooling system uses about 7.1 percent
of the overall feature selection and classification processing
time, as CPUs are added to the simulation. Another object
tracking experiment demonstrates that even a non-parallel
PF allows effective feature selection and classification in sim-
ple settings, at 55 video frames per second on a 933MHz
Pentium III CPU [11]. Note that in the latter experiment,
feature interactions were also considered, making feature se-
lection computationally more costly.

5. CONCLUSION
The limited processing resources available on a typical

host restrict the complexity, accuracy, and timeliness of video
content analysis. In this paper, we have integrated the par-
allel and hypothesis driven feature extraction and classifi-
cation approaches. The PF has been modified for real-time
hypothesis driven feature extraction in DBNs, and selected
features are extracted in parallel to support computationally
expensive signal processing. We use a pooling system to co-
ordinate output from multiple PFs. A loss of classification
accuracy, caused by parallelization, is avoided by allowing
the pooled PFs to exchange particles. Equally important,
the processing rates of the techniques seem to increase lin-
early with the number of CPUs, indicating a feasible solution
to the targeted processing bottleneck problem. Finally, by
only extracting the most efficient features, the signal pro-
cessing resource usage can in many cases be reduced, while
the classification accuracy is maintained.

6. ACKNOWLEDGEMENTS
I would like to thank Viktor Sigurd Wold Eide, Finn

Verner Jensen, Frank Eliassen, and Olav Lysne for con-
tributing to ideas presented in this paper.

7. REFERENCES
[1] S.-F. Chang and H. Sundaram. Structural and

Semantic Analysis of Video. In Proceedings of
Multimedia and Expo (ICME 2000), volume 2, pages
687–690. IEEE, 2000.

[2] A. Doucet, V. Ba-Ngu, C. Andrieu, and M. Davy.
Particle filtering for multi-target tracking and sensor
management. In Proceedings of the Fifth International
Conference on Information Fusion, volume 1, pages
474–481, July 2002.

[3] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification. Wiley-Interscience. John Wiley and
Sons, Inc., 2000.

[4] V. S. W. Eide, F. Eliassen, O.-C. Granmo, and
O. Lysne. Scalable Independent Multi-level
Distribution in Multimedia Content Analysis. In
Protocols and Systems for Interactive Distributed
Multimedia (IDMS/PROMS 2002), volume 2515 of
LNCS, pages 37–48. Springer, 2002.

[5] V. S. W. Eide, F. Eliassen, O.-C. Granmo, and
O. Lysne. Supporting Timeliness and Accuracy in
Distributed Real-time Content-based Video Analysis.
In Proceedings of the 11th Annual ACM International
Conference on Multimedia (MM’03), pages 21–32.
ACM Press, 2003.

[6] V. S. W. Eide, F. Eliassen, O. Lysne, and O.-C.
Granmo. Extending Content-based Publish/Subscribe
Systems with Multicast Support. Technical Report
2003-03, Simula Research Laboratory, July 2003.

[7] A. M. Ferman and A. M. Tekalp. Probabilistic
Analysis and Extraction of Video Content. In
Proceedings of IEEE ICIP, volume 2, pages 91–95.
IEEE, 1999.

[8] A. Francois and G. Medioni. A Modular Software
Architecture for Real-Time Video Processing. In
Proceedings of the Second International Workshop on
Computer Vision Systems (ICVS 2001), volume 2095
of LNCS, pages 35–49. Springer, 2001.

[9] A. Garg, V. Pavlovic, and J. M. Rehg. Audio-Visual
Speaker Detection Using Dynamic Bayesian Networks.
In Proceedings of the 4th IEEE International
Conference on Automatic Face and Gesture
Recognition (FGR 2000), pages 384–390. IEEE, 2000.

[10] O.-C. Granmo, F. Eliassen, O. Lysne, and V. S. W.
Eide. Techniques for Parallel Execution of the Particle
Filter. In Proceedings of the 13th Scandinavian
Conference on Image Analysis (SCIA2003), volume
2749 of LNCS, pages 938–990. Springer, 2003.

[11] O.-C. Granmo and F. V. Jensen. Real-time Hypothesis
Driven Feature Extraction on Parallel Processing
Architectures. In Proceedings of the 2002 International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’02), Las Vegas,
USA, pages 727–733. CSREA Press, June 2002.

[12] S. Hongeng, F. Bremond, and R. Nevatia. Bayesian
Framework for Video Surveillance Applications. In
Proceedings of the 15th International Conference on
Pattern Recognition, volume 1, pages 164–170. IEEE,
2000.

[13] M. Isard and A. Blake. Condensation – conditional
density propagation for visual tracking. International
Journal of Computer Vision, 29(1):5–28, 1998.

[14] F. V. Jensen. Bayesian Networks and Decision
Graphs. Series for Statistics for Engineering and
Information Science. Springer Verlag, 2001.

[15] F. V. Jensen, H. I. Christensen, and J. Nielsen.
Bayesian Methods for Interpretation and Control in
Multi-agent Vision Systems. In Proceedings of
Applications of Artificial Intelligence X: Machine
Vision and Robotics, SPIE, 1992.

[16] B. Li and R. Chellappa. A generic approach to
simultaneous tracking and verification in video. IEEE
Transactions on Image Processing, 11:530–544, May
2002.

[17] J. Liu et al. Sequential Monte Carlo methods for
dynamic systems. Journal of the American Statistical
Association, 93(443):1032–1044, 1998.

[18] L. Marcenaro, F. Oberti, G. L. Foresti, and C. S.
Regazzoni. Distributed Architectures and
Logical-Task Decomposition in Multimedia
Surveillance Systems. Proceedings of the IEEE,
89(10):1419–1440, October 2001.

[19] T. M. Mitchell. Machine Learning. Computer Science
Series. McGraw-Hill International Editions, 1997.

[20] A. V. Nefian. Embedded Bayesian networks for face
recognition. In Proceedings of the 2002 IEEE
International Conference on Multimedia and Expo,
volume 2, pages 133–136. IEEE, 2002.

[21] S. J. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach (2nd Edition). Prentice Hall, 2003.

[22] A. S. Tanenbaum and M. Steen. Distributed Systems -
Principles and Paradigms. Prentice Hall, 2002.

