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1. Introduction

We will discuss topics from [1, §16.10]. Recall from last week:

Theorem 1.1 (Lagrange’s theorem). Let G be a finite group, and let
H ⊂ G be a subgroup. Then |G| = |H| · [G : H].

From this fundamental fact, we get various interesting applications.
We first look at a classical consequences in number theory, before we
see how this makes the RSA encryption scheme work.

2. Euler’s theorem

Euler’s theorem is about modular multiplication. Recall from last
week the multiplicative group of integersmod (n)

Pn = {k ∈ Z | 1 ≤ k < n, gcd(k, n) = 1}
with group operation given by integer multiplication modulo n.
The following is a consequence of Lagrange’s theorem:

Corollary 2.1. Let G be a finite group of order n = |G| and with
neutral element e ∈ G. Then gn = e for all g ∈ G.

Proof. Let k be the order of the cyclic subgroup H = ⟨g⟩ ⊂ G. Then
since H is cyclic, we know that the order of its generator g is the same
as k. Lagrange’s theorem says that n = k · [G : ⟨a⟩], which means that

gn = gk·[G:⟨a⟩] = (gk)[G:⟨a⟩] = e[G:⟨a⟩] = e .

□
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Definition 2.2 (Euler’s totient function). Let n > 0 be a natural num-
ber. Euler’s totient function ϕ is defined as

ϕ(n) = |Pn|

i.e. as the number of positive integers less than n which are coprime to
n.

Lemma 2.3. Let p be a prime number. Then ϕ(p) = p− 1.

Proof. Every positive integer less than p is coprime to p since p is a
prime number. □

Lemma 2.4. Let p and q be prime numbers. Then ϕ(pq) = ϕ(p)ϕ(q).

Proof. The proof is an exercise left to the reader. □

Theorem 2.5 (Euler’s theorem). Let a and n be coprime natural num-
bers. Then

aϕ(n) = 1 mod (n)

Proof. This is a reformulation of Corollary 2.1 when G = Pn. □

Corollary 2.6 (Fermat’s little theorem). Let p be a prime. Then for
any integer 1 ≤ a < p,

ap−1 = 1 mod (p)

Proof. Since p is prime, any number 1 ≤ a < p is an element of Pp,
and Lagrange’s theorem implies that aϕ(p) = 1 mod (p). But then the
result follows by 2.3. □

Fermat’s little theorem can be used as a test for non-primality:

Example 2.7 To prove that 527 is not a prime, we choose any an
integer a and compute a527−1 mod (527). If the answer is different
from 1, then 527 isn’t a prime number. E.g. if a = 2, then 2526 = 64 ̸= 1
mod (527), and therefore 527 is not a prime number.

The same thing happens when n = 1935, when we choose a = 2:
Since a1934 = 4 mod (1935) and so we can conclude that 1935 is not a
prime number.
We chose the base number a = 2 because it was small and therefore

easier to compute with. But sometimes we need to work with other
base numbers to find a conclusion. As an example we will see that
1105 is not a prime. First we try with a = 2, but then we get 21104 = 1
mod (1105) so no conclusion can be drawn. We get the same result for
a = 3 and 4 too, but letting a = 5 results in 51104 = 885 mod (1105),
and the conclusion is therefore that 1105 isn’t a prime number.
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3. The RSA encryption scheme

Choose prime numbers p and q, and let n = pq be their product.
Then choose numbers x, y < ϕ(n) such that

(1) xy = 1 mod (ϕ(n)) .

We claim that x, y ∈ Pϕ(n): Let r = ϕ(n). If xy = 1 mod (r), then
xy = 1 + kr for some integer k. This implies that xy is not divisable
by any of the prime factors of r. Therefore, gcd(xy, r) = 1, and from
this it follows that gcd(x, r) = gcd(y, r) = 1. In other words, x and y
belong to the set Pr.

We are now ready to encrypt! Let 0 ≤ m < n be our message. Then
the enrypted message is defined to be

e(m) = mx mod (n) .

Decryption works in the same way, using the integer y as exponent. For
an encrypted message M , recover the decrypted plain text message by

d(M) = My mod (n) .

The reason this works is because e and d are inverse functions. To see
this, assume that gcd(m,n) = 1. Then

d(e(m)) = (mx)y

= mxy

= m1+kϕ(n)

= m · (mϕ(n))k

= m · 1k = m mod (n) .

The equality mϕ(n) = 1 is Euler’s theorem.
There is essentially one more case to check, namely gcd(m,n) = p:

In this case we use the fact that two integers a and b are equal modulo
n if and only if a = b mod (p) and a = b mod (q) at the same time.
(proof: Corollary of p | x and q | x ⇔ pq | x.) Thus, if p | m then

d(e(m)) = mxy = 0 = m mod (p) .

Lastly, we want to show that d(e(m)) = m mod (q). To do this, we
need the identity ϕ(pq) = ϕ(p)ϕ(q) from Lemma 2.4. We then get

mϕ(n) = (mϕ(q))ϕ(p) = 1ϕ(m) = 1 mod (q) .

The middle equivalence uses that gcd(m, q) = 1 together with Euler’s
theorem. Finally,

d(e(m)) = m · (mϕ(n))k = m · 1k = m mod (q) .
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3.1. Private and public keys. In public key cryptography using the
RSA encryption scheme, one talks about public and private keys. In
the above setting, the public key concists of the pair (n, x), and the
private key (n, y).
This way, anyone can encrypt messages, but only the owner of the

private key can decrypt messages since it requires the knowledge of y.
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