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1. Introduction

We study sequences of numbers where each number is defined by
a recursive rule in terms of its k predecessors. We can say that such
sequences satisfy a recurring relation, i.e. a relation that holds for any
k consecutive numbers in the sequence. We will define what it means to
be such a relation more precisely, and look at some classes of relations
where we get an explicit description of the sequence of numbers they
define.

These notes span the topics in [1, §10.1-4]. In addition to the material
presented in the present text, we will also discuss examples from the
text book during the lectures.

2. Definition

We encountered an example of a recurrence relation already in the
very first week of this course, when we studied the Fibonacci sequence

(1) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 . . . .
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The recurrence relation governing this sequence is the one we used to
define it, namely

(2) Fn = Fn−1 + Fn−2 .

We call (2) a recurrence (or difference) relation of order 2 since it
relates each number in the sequence to its two closest predecessors.
Notice that equation (2) is in itself insufficient for producing the se-
quence (1), since it will only tell us what the n’th number is relative to
the previous neighbors, but not how and where to start the sequence.
Information like that is called an initial condition, which for the Fi-
bonacci sequence is given by declaring what the initial values should
be: F0 = F1 = 1.

Definition 2.1. Fix a natural number k. A recurrence relation of
order k corresponding to a sequence of numbers (a0, a1, . . .) is a set of
equations of the form

an = ϕ(n, an−1, an−2, . . . , an−k) ; n ≥ k

where ϕ is a function of k + 1 input variables.
The first k numbers a0, a1, . . . , nk−1 of the sequence is referred to as

initial values.

Remark 2.2 We do not specify what kind of numbers we allow in our
sequences. Most of the time though, they will be integers.

A set of initial values and the recurrence relations together determine
the entire sequence. We often think of a recurrence relation as a method
of building the number sequence it governs.

Exercise 2.3 Show by induction that solutions to recurrence relations
with given initial value are unique. In other words, if a0, a1, . . . and
b0, b1, . . . are two sequences which both solve a given recurrence relation
(and its initial condition), show that an = bn for all n ≥ 0.

Example 2.4 The sequence 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, . . .
where the n’th term is given by the factorial function an = n!, satisfies
the recurrence relation an = n ·an−1 or order 1, and is a solution to the
initial value problem specified by a0 = 1.

Example 2.5 The Fibonacci sequence (1) satisfies the recurrence re-
lation Fn = Fn−1 + Fn−2, and is therefore of order 2.
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Example 2.6 The numbers in the sequence 2, 6, 18, 54, 162, . . . follow
the pattern that the ratio between consecutive numbers is constant
an/an−1 = 3. Therefore the sequence satisfies the recurrence relation
an = 3 · an−1 and is of order 1.

Any sequence satisfying the recurrence relation an = r ·an−1 for some
constant r, is called a geometric progression with common ratio r.

3. Solving recurrence relations

A recurrence relation together with an initial condition is often called
an initial value problem. An explicit non-recursive formula for the n’th
term is called a particular solution for the initial value problem. If we
manage to write down a formula for that solves all the initial value
problems for a given recurrence relation, we call this a general solution
for the relation.

We will spend some time solving various recurrence relations.

3.1. Geometric progressions. Consider the geometric progression
with common ratio r and initial value a0. By an easy inductive proof,
the n’th term can be written explicitly as an = a0·rn. This is the general
solution for all initial value problems for geometric progressions with
common ratio r.
For the particular sequence in Example 2.6, we have r = 3 and initial

condition a0 = 2. Hence the solution to that particular initial value
problem is an = 2 · 3n.

3.2. Inspection. Sometimes we are lucky and a pattern in the number
sequence will appear to us if we only write down the first few terms of
it. If so, we can often guess the solution and use induction to prove
that it holds for every number in the sequence.

Exercise 3.1 Solve the recurrence relation an = n−2
n

· an−1 +
2
n
with

initial condition a1 = 1.

Solution: We know a1 = 1, so a2 =
2−2
2

· 1 + 2
2
= 0 + 1 = 1 as well. If

we go on, we get the sequence

a1 = 1, a2 = 1, a3 = 1, . . .

for as many terms as we care to compute by hand. So the guess is
that an = 1 for all n, and we try to prove this by induction on n: We
have checked that the induction hypothesis is satisfied, namely that
a1 = 1. So for the induction step, assume that ak = 1 for all k < n. In
particular an−1 = 1, and so the recurrence relation implies that

an =
n− 2

n
· an−1 +

2

n
=

n− 2 + 2

n
=

n

n
= 1 .
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3.3. Generating functions. A number sequence s = (a0, a1, a2, . . .)
gives rise to a formal sum

f(x) =
∞∑
n=0

an xn .

We call f(x) the generating function for the sequence s. ((Comment
on how to manipulate such infinite sums, and when we can consider
them as functions.))

We now assume that the an’s satisfy a given recurrence relation, and
will try to find a non-recursive formula for the coefficients an. To see
that the formalism of generating functions is useful to this end, we
focus on a particular example, namely the Fibonacci sequence (2.5).
By basic algebraic manipulation, we get that

f(x)− x · f(x)− x2 · f(x) = a0+

(a1 − a0) x+

(a2 − a1 − a0) x
2+

(a3 − a2 − a1) x
3+

. . .

(an − an−1 − an−2) x
n + . . . .

The recurrence relation governing the coefficients implies that the terms
on the right hand side vanish for n ≥ 2, and we get

f(x) · (1− x− x2) = a0 + (a1 − a0)x = 1 + (1− 1)x = 1

which we solve for f(x) to get

f(x) =
1

1− x− x2
.

That we managed to write the generating function on a very compact
form is in itself interesting, but we still do not have a more convenient
way of expressing each Fibonacci number. To accomplish this, we need
one more step in our analysis of f(x).

The polynomial 1 − x − x2 = −(x2 + x − 1) has two distinct real
roots

r1 =
−1 +

√
5

2
and r2 =

−1−
√
5

2

which means that

−(x2 + x− 1) = −(x− r1)(x− r2)

and by the method of partial fractions,

(3) f(x) =
1

−(x− r1)(x− r2)
=

c1
x− r1

+
c2

x− r2
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for some constants c1 and c2. By straight forward calculation, it follows
that c2 = 1/

√
5 and c1 = −c2 = −1/

√
5. Lastly, we use the identity

1

1− a
=

∞∑
n=0

an

to rewrite (3) as

f(x) = −c1
r1

· 1

(1− x/r1)
− c2

r2
· 1

(1− x/r2)

=
1√
5r1

·
∑
n=0

(x/r1)
n − 1√

5r2
·
∑
n=0

(x/r2)
n

=
1√
5

∑
n=0

(
1

rn+1
1

− 1

rn+1
2

)
xn

We can now read off the Fibonacci sequence from the coefficients in
the power series:

Fn =
1√
5

(
1

rn+1
1

− 1

rn+1
2

)
or, by substituting for r1 and r2:

(4) Fn =
1√
5

((
2

−1 +
√
5

)n+1

−
(

2

−1−
√
5

)n+1
)

.

The above formula is an explicit, non-recursive definition of the num-
bers in the Fibonacci sequence.

3.4. Linear homogeneous recurrence relations of order 2. The
recurrence relation that gave us the Fibonacci sequence is an example
of a recurrence relation of the form

(5) A · an +B · an−1 + C · an−2 = 0

of order 2 where A, B, and C are real constants. Note that for this to
be a recurrence relation, the constant A cannot be zero.

We call these relations homogeneous since the constant term on the
right hand side is zero, and linear since the left hand side defines a
linear transformation of the input vector (an, an−1, an−2).
Linearity implies that if {an} and {a′n} are two solutions1 of the same

recurrence relation, then any linear combination of the two sequences
{c · an + d · a′n} (here c, d are constants) is also a solution.

Exercise 3.2 Assume that an and bn are solutions to the recurrence
relation

(6) A · an +B · an−1 + C · an−2 = 0 .

1Remember that before we fix initial values, there are infinitely many sequences
that satisfy the recurrence relation.
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Show that for any pair of constants k, l, the linear combination kan+
lbn is also a solution.

Remember that the geometric progression with common ratio r was
given by the recurrence relation an = r · an−1 and that the general
solution was an = a0 · rn. We can think of this relation as a linear
homogeneous relation of order two by letting the constant C = 0:

an − ran−1 + 0 · an−2 = 0 .

Motivated by this, we are tempted to see if the solution an = c · rn will
also solve the general linear relation (6). We first try with the simplest
possibility, by letting c = 1. Then an = rn and substituting this into
the recurrence relation produces the following equation:

A · rn +B · rn−1 + C · rn−2 = 0

which we divide by rn−2 ̸= 0 to get

(7) A · r2 +B · r + C = 0 .

We call this the characteristic equation associated to our recurrence
relation, and it tells us that an = rn is a solution if and only if r is a
root of (7). Therefore,

r1,2 =
−B ±

√
B2 − 4AC

2A
.

Depending on the sign of the discriminant B2 − 4AC, these roots will
be complex or real numbers, and this distinction will lead to different
cases in our analysis of the general solution. We break the situation
down according to the following decision tree which depends on the
roots r1 and r2:

◦
r1 ̸=r2 r1=r2

◦
R C

•

• •

3.4.1. Case of r1 ̸= r2: We first assume that the roots are distinct.
Note that they may be complex. Since the recurrence relation is linear
we know that all linear combinations of the solutions we have found
are also solutions:

(8) an = c · rn1 + d · rn2 .

We will now show that all solutions are on this form. Given ini-
tial values a0, a2, we find the special solution by solving the system of
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equations

a0 = c · r01 + d · r02 = c+ d

a1 = c · rn1 + d · rn2 = c · r1 + d · r2
which in vector form looks like

(9)

[
1 1
r1 r2

]
·
[
c
d

]
=

[
a0
a1

]
By our assumption that r1 ̸= r2, we see that the coefficient matrix of
this system is invertible with inverse

1

r2 − r1
·
[
r2 −1
−r1 1

]
.

This means that there exists coefficients c, d such that (8) satisfies
the initial value problem. Thus, every initial value problem of the
recurrence relation has a solution within the set of solutions given by
(8). Since solutions are unique, this also implies that there are no
other types of solutions to any given initial value problem of this type
of recurrence relation.

Sub case: Real roots. When r1 and r2 are real numbers, equation (8)
describes all solutions to any real-valued initial condition, using only
real constants. We cannot make this expression any simpler, so we are
done.

Sub case: Complex roots. Given a set of real initial values a0, a1, the
solution to our recurrence relation is a sequence of real numbers. But
can we find a formula which describes all the possible solutions using
only real constants, as in the previous case? The solutions are described
by (8), but that formula involves complex numbers r1 and r2, and also
complex free variables c, d. Thus, a priori, it is not clear that the answer
to this question is yes.

However, it turns out that it is indeed possible, when the initial
values of the sequence are reals. We proceed to show why this is so.

The first observation is that since the characteristic equation (7) has
real coefficients A,B,C, then the roots must be complex conjugates:
r1 = r̄2. With the previous case taken care of, we can also assume
that − im(r1) = im(r2) ̸= 0. Therefore, the polar form of the roots are
r1 = keiθ and r2 = ke−iθ for some real number k and angle θ ∈ (0, π).
In particular, sin(θ) ̸= 0.

Remark 3.3 As an alternate route to the one below, we can form two
linear combinations an = rn1 + rn2 and bn = −irn1 + irn2 which both turn
out to be real solutions. Then we can show that these two span the
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entire space of solutions by the usual method, leading in this case to
the determinant

det

[
1 0

k cos(θ) k sin(θ)

]
= k sin(θ) ̸= 0.

Thus, equation (8) turns into

an = c · knei·nθ + d · kne−i·nθ .

By dividing by kn and using the identity ei·nθ = cos(nθ)+ i sin(nθ), we
can write this as

an/k
n = c · (cos(nθ) + i sin(nθ)) + d · (cos(−nθ) + i sin(−nθ))

or, more compactly,

(10) an/k
n = (c+ d) cos(nθ) + i(c− d) sin(nθ) .

Given real initial values a0, a1 ∈ R we see that

a0/1 = (c+ d) cos(0) + i(c− d) sin(0) = c+ d

a1/k = (c+ d) cos(θ) + i(c− d) sin(θ) .

From the first equation we deduce that (c + d) is real which means
that im(c) = − im(d). Then from the second equation we deduce that
i(c − d) is also real (this uses that sin(θ) ̸= 0). By basic complex
arithmetic, this implies that re(c) = re(d). All in all we conclude that
c = d̄.

Using this, we write the general solution (10) as

an = kn(x cos(nθ) + y sin(nθ))(11)

for real constants x = c + d = 2 re(c) and y = i(c − d) = −2 im(c).
Note that the complex number c is freely chosen, therefore any pair of
real constants x and y can be obtained this way.

3.4.2. Case of r1 = r2. If both roots are equal to zero, this means that
the recurrence relation collapses to relation A ·an = 0 of order 0, which
only has the trivial solution an = 0 since A ̸= 0. Therefore, assume
that r1 = r2 = r ̸= 0 is the common root.

We claim that the general solution is given by

(12) an = c · rn + d · n · rn .

Exercise 3.4 Check that sequences on the form of (12) satisfy the
recurrence relation (6).
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To solve a given initial value problem, we are, just as in the previous
two cases, led to a vector equation[

1 0
r r

]
·
[
c
d

]
=

[
a0
a1

]
which consistent since the determinant of the coefficient matrix is equal
to r ̸= 0.

The argument from the very first case can now be repeated to show
that given an initial condition, the solution will be on the form de-
scribed by equation (12). Hence, we have found that all solutions can
be written on the given form.

3.5. Non-homogeneous linear relations of order 2. Assume that
gn is a general solution to the homogeneous recurrence relation

A · an +B · an−1 + C · an−2 = 0

of order k and that pn is a particular solution to the non-homogeneous
relation

A · an +B · an−1 + C · an−2 = q(n)

with a given initial condition a0, a1. Then the general solution to the
non-homogeneous relation is given by the sum sequence an = gn + pn.

Exercise 3.5 Assume that gn is a solution to the homogeneous recur-
rence relation

(13) A · an +B · an−1 + C · an−2 = 0 ,

and that pn is a solution to the non-homogeneous relation

(14) A · an +B · an−1 + C · an−2 = q(n) .

Show that the sum
an = gn + pn

is a solution to the non-homogeneous relation (14).

Example 3.6 We know from exercise ?? that the solution to the initial
value problem

(15)

{
an = 2an−1 + 1

a0 = 1

is given by an = 2n+1−1. This is in other words a particular solution to
the general problem. The homogeneous recurrence relation associated
to (15) looks like

bn = 2bn−1

which is easily seen to have general solution given by bn = 2nb0.
Therefore, the general solution to (15) is the sum of these:

an = (2n+1 − 1) + (2na0) = 2n · (2 + a0)− 1 .
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3.5.1. Linear non-homogeneous recurrence relations of order 1. Given
a linear recurrence relation of the form

(16) an = Ban−1 + f(n) ,

where B is a real constant and f(n) is a function of n. Then we can
deduce the following formula

(17) an = Bkan−k +
k−1∑
i=0

Bif(n− i) ,

for k ≤ n. In particular, when k = n, we get the general solution right
away:

an = Bna0 +
n−1∑
i=0

Bif(n− i)

= Bna0 +Bn−1f(1) + . . .+B2f(n− 2) +Bf(n− 1) + f(n) .

Sometimes we are even lucky enough to find a nice formula for the sum
on the right hand side of the equation.

Exercise 3.7 Show by induction that formula (17) holds.

Exercise 3.8 Find the solution to the initial value problem given by
an − an−1 = 2n, and a0 = 2.
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