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1. Introduction

In these notes we discuss topics from [2, §16.1-2]. During week 42,
we aim to cover the essential parts of §3,4,6 and 8 during the lectures.
In addition we include the definitions from §7, but we skip theorem
7.3.

We will postpone the topics of §5 until we get to coding theory in
week 45 and 46.

2. Preliminaries on set theory

If S is a set, we write s ∈ S to indicate that s belongs to S. Given
two sets S and T , the cartesian product S × T is the set consisting of
all pairs (s, t), where s ∈ S and t ∈ T . In other words S×T = {(s, t) |
s ∈ S, t ∈ T}. A function of sets f : R → S is a rule which assigns for
each r ∈ R an element f(r) ∈ S. Two functions f, g : R → S are equal
if f(r) = g(r) for all r ∈ R. Two sets, R and S, are called isomorphic
if there are functions f : R → S and g : S → R such that g(f(r)) = r
for every r ∈ R, and f(g(s)) = s for every s ∈ S. If idR : R → R
is the identity function given by id(r) = r for all r ∈ R, then we can
summarize the above by saying that R and S are isomorphic if and only
if there exists functions f and g such that f ◦ g = idS and g ◦ f = idR.
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3. Definition

Let G be a set equipped with a closed binary operation, i.e. a func-
tion

(1) µ : G×G → G .

We say that (1) gives a way to multiply elements i G, and we often use
the “in-fix”-notation

(2) g · h := µ(g, h)

instead of referring to the function µ.

Definition 3.1. A group is a pair (G, ·) where G is a set and · is a
closed binary operation which satisfies the following rules:

1) For all elements a, b, c ∈ G, a · (b · c) = (a · b) · c. We say that
the operation is associative.

2) There exists an element e ∈ G such that e · a = a = a · e for all
a ∈ G. Such an element is called neutral.

3) For any element a ∈ G there exists an element b ∈ G such that
b · a = e = a · b. Such an element is called inverse of a, and we
often denote it by a−1.

Remark 3.2 The first axiom tells us that we don’t need to keep track of
parentheses when we compose elements using the group multiplication.
Given a, b, c ∈ G, then there are two ways of multiply them together
in that order: Either we do a(bc) by first multiplying bc, followed by
multiplication by a from the left, or we do (ab)c by starting with ab
and then multiplying by c from the right. Axiom 1 in the list above,
however, says that these two ways of combining a, b, c produce the
same result. Therefore, we usually drop the parentheses and simply
write abc.

Remark 3.3 Let e and e′ be neutral elements. Then e = e · e′ = e′,
and so we conclude that e = e′. In other words: the neutral element is
unique.

Remark 3.4 Any element a ∈ G also has a unique inverse a−1. The
reason is that if b and c are both inverse to a, we get:

b = b · e = b · (a · c) = (b · a) · c = e · c = c .

Remark 3.5 If e ∈ G is the neutral element in G, then e is its own
inverse since e · e = e by the definition.
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Remark 3.6 If a, b ∈ G, then

(a · b) · (b−1 · a−1) = a · (b · b−1) · a−1 = a · e · a−1 = a · a−1 = e

Therefore (a · b)−1 = b−1 · a−1.

Definition 3.7. A group G is called abelian is g · h = h · g for all
elements g, h ∈ G.

4. Examples

Example 4.1 [The integers] Consider the set of natural numbers

N = {1, 2, 3, . . .} .

We can combine elements of this set using normal addition of numbers,
and this defines a closed binary operation. However, there is no neutral
element, so this is not a group. We can fix this by adding 0 to the set.
Then we have 0 + n = n for all natural numbers n, so 0 is the neutral
element. But now the problem is that we have no inverses: Given
n > 0, there are no other m ≥ 0 such that n+m = 0. As we very well
know, such an m must be a negative number. Therefore, it is not until
we adjoin all the negative numbers

Z = {. . . ,−2,−1, 0, 1, 2, . . .}

we have a group. In fact, since a + b = b + a for all integers a and b,
the group of integers is abelian.

The letter Z denoting the set of integers is rumoured to come from
the first letter of the German word Zahlen, meaning “numbers”. Its
use appears in print on page 20 of [1], but was used sporadically before
as well.

Example 4.2 [The integers modulo n] Fix a natural number n > 0,
and consider the relation between integers defined by r ≡ t when r− s
is divisible by n. In other words, we say that r ≡ s is there exists
an integer k such that r = s + kn. It is easily checked that ≡ is
an equivalence relation, and we denote by Z/n the set of equivalence
classes. Addition of integers induces a closed binary operation on Z/n,
which gives it the structure of an abelian group. We will check this
claim.

If r ∈ Z is an integer, let [r] ∈ Z/n denote the equivalence class it
belongs to. We defined [r] + [s] = [r + s], and for this operation to be
well defined, we need see that the result does not depend on the choice
of representatives we make. In other words, we need to check that if
r′ ≡ r and s′ ≡ s, then [r′ + s′] = [r+ s]. There exist integers k, l such
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that r′ = r + kn and s′ = s′ + ln. Therefore, r + s = r′ + s′ + n(k + l)
which means that r+s ≡ r′+s′, so [r+s] = [r′+s′] just as we wanted.

Having established that our definition of the group operation makes
sense, we need to check that it obeys the three group axioms of Defi-
nition 3.1:

The integer 0 gives rise to the neutral element [0] since [r]+[0] = [r+
0] = [r]. Secondly, for any [r] ∈ Z/n we have [r] + [−r] = [r − r] = [0],
so the element [−r] is an inverse.

Finally, associativity (axiom 1) in Z/n follows from associativity in
Z: Given r, s, t ∈ Z, then

[r] + ([s] + [t]) = [r] + ([s+ t])

= [r + (s+ t)]

= [(r + s) + t] = [r + s] + [t]

= ([r] + [s]) + [t] .

The group Z/n is abelian since the group of integers is abelian: [r]+
[s] = [r + s] = [s+ r] = [s] + [r].

Furthermore, since for every natural number k there exists a unique
remainder 0 ≤ k′ < n such that k ≡ k′, the group Z/n is finite and can
be identified with the set

Z/n = {0, 1, 2, . . . , n− 1}

of n remainders.

Example 4.3 We can make the set of real numbers into an abelian
group by letting the closed binary operation be addition. We denote
this group by (R,+).

Example 4.4We can make the set of non-zero real numbers R× into an
abelian group by letting the closed binary operation be multiplication.
We denote this group by (R×, ·). The reason we have to remove 0 from
R is that it has no inverse when the operation is multiplication.

Example 4.5 Let R be the set of real numbers, and Mn(R) the set
of n × n-matrices with real entries. Then we can consider the sum of
matrices in the usual way, which makes Mn(R) an abelian group with
neutral element the zero matrix.

Example 4.6 Let GLn(R) the set of invertible n × n-matrices with
real valued entries. We turn this set into a group by letting the group



MA-224 - WEEK 42 INTRODUCTION TO GROUP THEORY 5

multiplication be matrix multiplication. Then GLn(R) becomes a non-
abelian (why?) group with neutral element equal to the identity ma-
trix.

Example 4.7 Let S be an alphabet of letters. The set of words which
can be formed from S has a closed binary operation, with the empty
word as neutral element. But just as in example 4.1, we lack inverse
elements so this is not yet a group. To achieve this, we simply add
letters to the alphabet which acts as inverses. Specifically, we form a
new set S−1 = {s−1 | s ∈ S}, and then consider the alphabet which is
the union of letters S ∪ S−1, from which we form words. For example,
if a, b, c ∈ S, then words in our new alphabet can look like a3cb−2, or
b−1c2b5. Finally, we allow reduction of words: If two consecutive letters
are inverse to each other, we remove them from the word. For example:
a2b−1bc3 = a2c3. When a word has reached its minimal length, it is
called reduced. The set of reduced words form a group, where the
operation is concatenation followed by reduction. The group of reduced
words generated by the set S is called the free group generated by S.

Example 4.8 Let Sn be the set consisting of n elements {1, 2, 3, . . . , n}.
A permutation of this set is a function σ : Sn → Sn which is bijection.
We think of a permutation as a way of shuffling the elements of Sn.
When we have two such shuffles, we can compose them and obtain a
new shuffle. Precisely, if σ and η are two bijections Sn → Sn, then the
composite function σ ◦ η is yet again a bijection, i.e. a permutation of
Sn.

The set of all permutations is denoted Σn and is a group by function
composition. The neutral element is the identity function Sn → Sn

sending k to k.

Example 4.9 Let A and B be groups. The cartesian product G =
A×B becomes a group when endowed with the closed binary operation
given by (a, b) · (a′, b′) = (a · a′, b · b′). The group A × B has neutral
element (eA, eB) where eA is the neutral element of A and eB is the
neutral element of B.

Example 4.10 Consider a regular n-gon P , for n ≥ 3. Concretely, let
Pn be the polygon with vertices equal to the set of the complex n-roots
on unity: {eik2π/n | 0 ≤ k < n}. A symmetry of Pn is a real linear
transformation of the plane which preserves distances between points,
and restricts to a permutation the vertices of Pn.
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Two such linear transformations can be composed, and this gives the
set of all symmetries, denoted Dn, the structure of a group.
To see that composition defines a closed binary operation, we first

note that the composition of two distance-preserving linear transfor-
mations g ◦f is again a distance-preserving linear transformation. Sec-
ondly, since both f and g acts on the vertices of Pn by a permutation,
then the composition g ◦ f acts on the vertices by the composite per-
mutation. Hence, g ◦ f is a linear transformation of the plane which
permutes the vertices of Pn.

Any linear distance-preserving transformation T will have eigenval-
ues equal to ±1, since if v is an eigenvector associated with the eigen-
value λ, then |v⃗| = |T (v⃗)| = |λ · v⃗| = |λ| · |v⃗|. Therefore, any symmetry
has an inverse, and axiom (3) of 3.1 holds.

5. Homomorphisms and isomorphisms

Given two groups, we compare them using the language of homo-
morphisms:

Definition 5.1. Let G and H be groups. A homomorphism α : G →
H is a function of the underlying sets of G and H such that

α(g · h) = α(g) · α(h) .
A homomorphism α is an isomorphism there exists a homomorphism
β : H → G such that α(β(h)) = h and β(α(g)) = g for all g ∈ G and
h ∈ H.

We should think of homomorphisms as maps from one group to
the other that preserve the group multiplication structures of the two
groups.

The word stems from the Greek homoios morphe which means ‘sim-
ilar form’.

Example 5.2 The real exponential function with base a > 0 is a group
homomorphism from the real numbers under addition, to the group of
positive real numbers under multiplication

expa : (R,+) → (R+, ·) .
This is because of the familiar formula expa(x+ y) = expa(x) · expa(y).
In fact, it is an isomorphism since its inverse, the base a-logarithm, is
also a group homomorphism: loga(x · y) = loga(x) + loga(y).

Example 5.3 The determinant is a function from the group of invert-
ible n× n-matrices to the non-zero real numbers under multiplication

det : GLn(R) → (R \ {0}, ·) .



MA-224 - WEEK 42 INTRODUCTION TO GROUP THEORY 7

This is because of the familiar formula det(M ·N) = det(M) · det(N).
It is an isomorphism if and only if n = 1.

6. Subgroups

Definition 6.1. Let G be a group, and let A ⊂ G be a subset which is
not the empty set. We say that A is a subgroup G if:

1) a · b ∈ A for all a, b ∈ A ⊂ G. (Note that we use the binary
operation in G, but demand that the result is contained in A.)

2) a−1 ∈ A for all a ∈ A ⊂ G. (Again, we use the inverse as
defined in the ambient group G but require that the result is
contained in A.)

A subgroup A ⊂ G is in itself a group. To see this, we must check
the axioms 1-3. The first axiom is true since it is true in G. Axiom 3
holds per the definition above, so all that remains to check is that the
neutral element e ∈ G is also contained in A:
Since A is not empty, there exists an element a ∈ A. Because of

axiom 2 in 6.1, the inverse a−1 is also in A. Because of axiom 1, the
product will also be contained in A. But the product a−1 · a = e is the
neutral element, so e ∈ A.

7. Finite groups

Definition 7.1. The order of a group G is the cardinality of its un-
derlying set. The order of G is denoted by |G|.

Definition 7.2. Let G be a group. The order of an element g is the
smallest natural number n such that gn = e. If no such number exists,
the order is said to be infinite. The order of g is denoted by |g|.

Theorem 7.3. Every finite group is a subgroup of a permutation group∑
n, where n = |G| is the order of G.

Proof. Enumerate the elements ofG = {g1, g2, . . . , gn} from 1 to n. Any
two element in the sequence σ(g) := (gg1 gg2 . . . ggn) are different.
Also, every element ggi is an element of G so it can be written as gij
for some index j unique to i. Therefore, σ(g) can be thought of as a
permutation of the elements of G, and we get function

σ : G → Σn,

sending g to σ(g).
We must show that this function is a group homomorphism. It is

obvious that σ(e) is the neutral element in Σn, and it follows from the
associativity of the group multiplication that σ(gh) = σ(g) · σ(h) in
Σn.
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The cancellation property says that g · h = g′ · h implies that g = g′.
This means that if σ(g) = σ(h) as permutations, then g = h as group
elements of G.
In conclusion, we have shown that σ : G → Σn is an injective group

homomorphism. So by Exercises 9.7 and 9.8, G is isomorphic to the
image of σ, which is a subgroup of Σn. □

8. Cyclic groups

Definition 8.1. A group G is cyclic if there exists an element g ∈ G
such that G = {gk | k ∈ Z}. We say that g is a generator for G, and
write G = ⟨g⟩.

Example 8.2 The group of integers Z is cyclic, and has exactly two
generators: −1 and 1. If A ⊂ Z is a subgroup, we let k be the smallest
strictly positive integer which is contained in A. Then we claim that k
generates A: If n ∈ A and n > 0, we write n = q · k + r for 0 ≤ r < k.
But then n− q · k = r. Since n and q · k are both elements of A, r ∈ A.
But 0 ≤ r < k, so r = 0 since k was the minimal strictly positive
integer contained in A. Therefore n = q · k. It follows that A is cyclic
with generators ±k.

This means that every subgroup of Z is cyclic. In the remaining of
this section we show similar statements for finite cyclic groups.

The following is immediate from the definitions:

Lemma 8.3. In a finite cyclic group G of order n, every generator has
order n.

Example 8.4 For any n, the group Z/n is cyclic with generator 1.

Example 8.5 The group Z/6 is cyclic, and it is generated by 1 and
5. E.g. < 5 >= {5, 4, 3, 2, 1, 0} which are all the elements of Z/6.
Therefore, generators are not unique.

Lemma 8.6. Let n > 1. Then Z/n = ⟨q⟩ if and only if gcd(q, n) = 1.

Proof. Exercise 9.5. □

Subgroups of cyclic groups are particularly simple:

Theorem 8.7. Let G be a finite cyclic group with generator g. If
A ⊂ G is a subgroup, then A is itself cyclic and its order divides |G|.
In fact, g|G|/|A| generates A.
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Proof. Since any element of G can be written as a power of g, so can
any element of A. Let k be the minimal exponent such that k > 0 and
gk ∈ A. We will show that A is cyclic by showing that the element gk

generates A. In the process we will also discover that k = |G|/|A|.
Let x ∈ A be any element. Again by the cyclicity of G there exists

an exponent m such that x = gm. Let m = q · k + r such that 0 ≤
r < k. Then x = gm = gq·k+r = gq·k · gr = (gk)q · gr. It follows that
gr = x · (gk)−q is an element of A since A is a subgroup and x and
(gk)−q both belong to A. But 0 ≤ r < k and k was assumed to be the
minimal strictly positive integer such that gk ∈ A. So this means that
r = 0. Thus we have written x = gq·k+0 = (gk)q as a power of gk. Since
this argument holds for any element x it follows that the element gk

generates the entire subgroup A.
Since A is cyclic and gk is a generator, this means that the order of

gk is |A|. In other words gk·|A| = e, so

(3) k · |A| = q · n
for some integer q. If w = gcd(q, |A|) ̸= 1, then |A|/w is a natural
number and k · |A|/w = q/w · n. This would mean that the order of gk

is less than |A|. Therefore, w = 1 which means that q must divide k
and we get that k′ · |A| = n where k′ = k/q. Consider then the cyclic
subgroup A′ = ⟨gk′⟩. Since (gk

′
)q = gk, it contains the cyclic subgroup

A. On the other hand, |A′| ≤ n since k′ · |A| ≡ 0 mod (n). But then

|A| ≤ |A′| ≤ |A|
so we must have |A| = |A′|. Since A is contained in A′ as a subset,
this means that A = A′. But then gk

′ ∈ A and k′ ≤ k which means
that k′ = k by the minimality of k. Finally, this means that q = 1 and
(3) then reads k · |A| = n which means that |A| divides n = |G|, and
gk = g|G|/n is a generator. □

Lemma 8.8. In a finite cyclic group of order n, the order of any
element is a divisor of n.

Proof. Let g ∈ G be an element, and consider the subgroup A =< g >.
The order of g is equal to the order of A, which by Theorem 8.7 divides
n. □

Theorem 8.9. Let n > 0 be a positive integer, and G a finite cyclic
group of order n.

Then any divisor d of n corresponds to a unique subgroup of G of
order d, and if A ⊂ G is a subgroup then |A| is a divisor of n.

In other words, there is a 1-1 correspondence of sets

{subgroups of G} ↔ {divisors of n} .

Proof. Theorem 8.7 already says the |A| is a divisor of n for every
subgroup A ⊂ G. We need to show that this assignment is bijective.
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Let g ∈ G be a generator. Then to show surjectivity we note that any
divisor d gives rise to a subgroup < gn/d >⊂ G which has order d.

Let A and B be (cyclic) subgroups of G of the same order m. Then
if g ∈ G is a generator of G, then Theorem 8.7 says that A = B are
the same subgroup since they are both generated by the same element
gn/m. □

If G is a cyclic group with generator g, we can consider the function
f : Z → G which sends k 7→ gk for every k ∈ Z. Then f(0) is the
neutral element in G and 1 ∈ Z is mapped to the generator g ∈ G. It
is easy to see that f is a homomorphism of groups, since f(m + n) =
gm+n = gm·gn = f(m)·f(n). It is also easy to check that f is surjective:
Given any element x ∈ G, we write it as gk for some power k of the
generator g. But gk = f(k), so x is in the image of f .
In this sense, we can say that the group of integers is equal or larger

than any other cyclic group we can think of.

Lemma 8.10. Let G be a cyclic group of finite order |G| = n and
generator g. Then the homomorphism f : Z/n → G defined by f([k]) =
gk is an isomorphism.

Proof. Let [k] ∈ Z/n. The function f is well defined since the value
f([k]) does not depend on the equivalence class representative for [k].
To see this, let q be any integer: Then gk+qn = gk · (gn)q = gk · 1q = gk.
Furthermore, f is a surjective homomorphism by the same reasoning
as in the above discussion.
To show that it is an isomorphism, we construct an inverse homo-

morphism f−1 : G → Z/n by the formula f−1(gk) = [k]. Be aware that
given an element x ∈ G, then there are more than one way to write x
as a power of the generator g. This is because gr+n = gr for all integers
r. However, if gt = e, then t = qn for some integer q. So if gr = gs in
G, then e = gs · g−r = gs−r and so r = s+ qn for some integer q.
Therefore, f−1 is a well defined function, since the equivalence classes

[k] and [k + qn] are equal in Z/n.
It is easy to check that f−1 is a homomorphism and it is evident that

f(f−1(gk)) = gk and f−1(f(k)) = k. □

9. Exercises

Exercise 9.1 Show that the free group generated by S is abelian if
and only if S = {x} is the singleton set.

Exercise 9.2 Show that Σ2 is abelian. Then show that Σ3 is not.

Exercise 9.3 Show that the abelian group Z/2× Z/2 is not cyclic.
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Exercise 9.4 Show that the element 5 generate the group Z/6, and
then show that 2 or 3 do not.

Exercise 9.5 Show the following:

(1) gcd(q, n) = n if and only if q ≡ 0 mod (n).
(2) gcd(q, n) = 1 if and only if kq ̸≡ 0 mod (n) for all 1 ≤ k < n.
(3) Z/n = ⟨q⟩ if and only if kq ̸≡ 0 for all 1 ≤ k < n.

Conclude, by (2) and (3), that Z/n = ⟨q⟩ if and only if gcd(q, n) = 1.

Exercise 9.6 Show that all cyclic groups are abelian.

Exercise 9.7 Show that the image of a homomorphism f : G → H

im(f) = {f(g) | g ∈ G} ⊂ H

is a subgroup of H.

Exercise 9.8 Show that an injective homomorphism f : G → H
defines an isomorphism G ∼= im(f).

Exercise 9.9 Show that a homomorphism f : G → H is an isomor-
phism if and only if f is a bijection as a function of sets.

Exercise 9.10 Show that a homomorphism f : G → H is an injection
of sets if and only if f(g) = eH if and only if g = eG.

Exercise 9.11 Let O(n) be the subset of GLn consisting of matrices
of determinant equal to ±1. Show that O(n) ⊂ GLn is a subgroup.
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