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1. Introduction

We will discuss topics from [1, §16.3-4]. Last week we learned about
basic concepts in group theory. In this week we will study a group of
integers with group operation being modular multiplication modulo n,
in addition to a fundamental theorem about the number of elements in
a finite group.

2. Basic arithmetic

We collect some basic arithmetic facts to begin with. Much of this
should be known from earlier.

2.1. The euclidean algorithm. Let x and n be any positive integers.
An algorithm for findind the remainder of integer division x by n was
written down by Euclid. Here it is, fashionably implemented in Python:

def remainder(x,n):

r = x

while r >= n:

r -= n

return r

In fact, if q is the number of iterations performed in the loop of the
algorithm, you will find that

x = q · n+ r .
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In fact, the numbers q and r are unique such that the above formula
holds and 0 ≤ r < n.

Definition 2.1. Let m and n be natural numbers. The greatest com-
mon divisor of m and n is the largest natural number which divides
both m and n. We denote this number by gcd(m,n).

The algorithm known as the euclidean algorithm computes greatest
common divisors.

Let m > n > 0 be natural numbers. The greatest common divisor of
m and n is equal to the greatest common division of m−n and n, or in
other words: gcd(m,n) = gcd(m−n, n). Since n > 0, then m−n < m.
If m − n = n, then gcd(m,n) = gcd(m − n, n) = gcd(n, n) = n. On
the other hand, if m− n > n, we may repeat the procedure using the
pair (m − n, n). The largest number in the pair will become strictly
smaller for each iteration. Since we always take the difference between
inequal numbers, we can assume that neither m nor n is 0. Therefore,
the procedure must stop at some point where m = n > 0.

def euclidean_algorithm(m, n):

while m != n:

if m > n:

m -= n

else:

n -= m

return m

2.2. Bézout’s identity. Let m,n be integers. Then Bézouts identity
is the statement that there exists integers x og y such that

xm+ yn = gcd(m,n) .

This fact follows from the euclidean algorithm and can be proved by
induction on the number of steps in the algorithm: Let mk and nk be
the pair of integers at the kth step of Euclid’s algorithm. If k = 1 is
the index of the start of the process, then m1 = m and n1 = n. Let
B(k) be the statement that mk = xkm + ykn and nk = zkm + wkn
for some integers xk, yk, zk, wk. Then B(1) is true with x1 = w1 = 1
and y1 = z1 = 0. For the induction step, assume that B(k) is true
for k ≥ 1. If mk > nk, according to the euclidean algorithm, we then
choose

mk+1 = mk − nk = (xk − zk)m+ (yk − wk)n

nk+1 = nk = zkm+ wkn

for the next step. Therefore B(k + 1) is true if we choose

xk+1 = xk − zk zk+1 = zk

yk+1 = yk − wk wk+1 = wk .
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Similarly if nk > mk. If the algorithm terminates at k = N , we then
have that B(N) is true which means that gcd(m,n) = mN = xNm +
yNn, which is Bézout’s identity.

This procedure is called the extended euclidean algorithm.

def extended_euclidean_algorithm(m,n):

x,y = (1,0)

z,w = (0,1)

while m != n:

if m > n:

m -= n

x -= z

y -= w

else:

n -= m

z -= x

w -= y

# Return the gcd together with x, y

# such that gcd(m,n) = xm + yn

return (m,x,y)

Remark 2.2 Be aware that x and y in this formula are not unique.

2.3. Modular exponentiation. Let a, b and n > 1 be integers. By
the division algorithm, we can write a = un+ r and b = vn+ s where
0 ≤ u, v < n. Then

ab = (un+ r)(vn+ s) = uvn2 + (us+ vr)n+ rs ≡ rs mod (n) .

In other words, if we want to compute the product ab mod (n), we
can start by first reducing a and b modulo n, then multiply together
the results.

This comes in handy when we are computing powers modulo n since
we can always keep the numbers involved in our calculations less than
n, as the next example shows.

Example 2.3We wish to compute 373 mod (13). By reducing modulo
13 whenever possible, our computation breaks into the following steps:

373 = 37 · 37 · 37 ≡ 11 · 11 · 11 mod (13)

= 121 · 11
≡ 4 · 11 mod (13)

= 44

≡ 5 mod (13) .
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The rule is that whenever we see a number which is larger or equal
to 13, we reduce it modulo 13 before we proceed with multiplication.
This way, all of our numbers are kept at a managable size.

3. Multiplicative modular inverses

Let m < n be integers such that gcd(m,n) = 1. Bézout’s identity
says that there exists x, y such that xm+yn = 1, or equivalently, there
exists an integer x such that xm ≡ 1 mod (n).

If x′ is another integer such that x′m ≡ 1 mod (n), then by subtract-
ing both sides we get (x− x′)m ≡ 0 mod (n). Since gcd(m,n) = 1, it
follows that x− x′ ≡ 0 mod (n). Therefore, multiplicative inverses to
m are unique modulo n.

Not all integers mod(n) have multiplicative inverses, the easiest ex-
ample is m = 0. Another non-trivial example is m = 2 and n = 4.
However, if we restrict attention to those integers which is coprime to
n, it turns out that we get a group.

Definition 3.1. Let n > 0. Define

Pn = {k ∈ Z | 1 ≤ k < n, gcd(k, n) = 1}
to be the set consisting of all natural numbers which are coprime to and
less than n.

Lemma 3.2. The set Pn becomes a group under integer multiplication
modulo n.

Proof. If x, y ∈ Pn then the product xy is also going to be coprime to n,
i.e. gcd(xy, n) = 1. If k > n and gcd(k, n) = 1 then also gcd(k−n, n) =
1 like in Euclid’s algorithm. Therefore Pn is closed under multiplication
modulo n. Inverse elements exist because of Bézout’s identity which
says that there exists integers s and t such that sk+tn = gcd(k, n) = 1,
or equivalently: There exists an integer s such that sk = 1 mod (n).
This integer belongs to the set Pn because gcd(s, n) is a divisor of
gcd(sk, n) = 1. □

4. Cosets of groups and Lagrange’s theorem

Definition 4.1. Let H ⊂ G be a subgroup of G, and let g ∈ G be any
element. The subset

gH = {g · h | h ∈ H} ⊂ G

is called the coset of g and H in G.

Lemma 4.2. Let G be a group and H ⊂ G a subgroup. Then any two
cosets of H ⊂ G are either equal or disjoint.

If H is a subgroup of G, then all cosets of H have the same number of
elements as the subgroup H. I.e. |gH| = |H| for all subgroups H ⊂ G
and elements g ∈ G.
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Proof. The property of belonging to the same coset defines a relation
among elements of g which is obviously reflexive and symmetric. Let
g1, g2 ∈ G and assume that x, y ∈ g1H and y, z ∈ g2H. This means
that there exists elements h1, h2, h3, h4 ∈ H such that

x = g1h1, since x ∈ g1H

y = g1h2, since y ∈ g1H

y = g2h3, since y ∈ g2H

z = g2h4, since z ∈ g2H

Therefore g1h2 = g2h3 from which we get g2 = g1h2h
−1
3 . Using this,

the last line from the list above says that z = g2h4 = (g1h2h
−1
3 )h4 =

g1(h2h
−1
3 h4). Since the product in the last parenthesis is an element

of H, we have shown that z = g1h so z ∈ g1H is in the same coset
as x. Therefore, the relation is also associative. Therefore it is an
equivalence relation with equivalence classes equal to the set of cosets
of H. We know that equivalence classes are either equal or disjoint, so
the same holds for cosets.
Let g1, g2 ∈ G be any two elements. Define a function of sets

f : g1H → g2H

by the formula f(x) = g2 · g−1
1 · x. Then f(x) belong to G, and since

any x ∈ g1H can be written as x = g1 · h for some h ∈ H, it follows
that f(x) = g2 · g−1

1 · g1 · h = g2 · h is in the coset g2H. The same
construction produces a function in the opposite direction

g : g2G → g1H ,

which is obviously inverse to f . It follows that |g1H| = |g2H|. The
coset eH of the neutral element is just the subgroup H, so for any
g ∈ G we get that |H| = |gH|. □

Note that the cosets is a partition of G into equally sized subsets
of which only one of them, eH = H is a subgroup. The others are
disjoint from H, so they are not subgroups since they do not contain
the neutral element e ∈ H.

Definition 4.3. Let H ⊂ G be a subgroup. The index of H in G is
denoted by [G : H], and is defined to be the number of different cosets
gH in G:

[G : H] =
∣∣{gH | g ∈ G}

∣∣
Example 4.4 Let G = Z/6 = {0, 1, 2, 3, 4, 5} be the cyclic group of
order 6, and let H = {0, 2, 4} be the subgroup generated by 2 ∈ Z/6



6 SVERRE LUNØE–NIELSEN

Here is an explicit list of all the cosets of H:

0 +H = {0, 2, 4}
1 +H = {1, 3, 5}
2 +H = {2, 4, 0}
3 +H = {3, 5, 1}
4 +H = {4, 0, 2}
5 +H = {5, 1, 3}

We see from the list that there are only two different cosets: 0 +H
and 1 +H, so [Z/6 : Z/3] = 2. We see from this that the formula

|Z/6| = |Z/3| · [Z/6 : Z/3]
holds in our case.

Theorem 4.5 (Lagrange’s theorem). Let G be a finite group, and let
H ⊂ G be a subgroup. Then |G| = |H| · [G : H].

Proof. We know from Lemma 4.2 that the cosets form a partition of G
and that all cosets have the same number of elements. It follows that

|G| =
∑
gH

|gH| =
∑
gH

|H| = |H| · (
∑
gH

1) = |H| · [G : H].

□
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